
Instrument Control Toolbox
For Use with MATLAB® and Simulink®

Computation

Visualization

Programming

Simulation

User’s Guide
Version 2

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Instrument Control Toolbox User’s Guide

© COPYRIGHT 2000–2006 The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
November 2000 First printing New for Version 1.0 (Release 12)
June 2001 Second printing Revised for Version 1.1 (Release 12.1)
July 2002 Online only Revised for Version 1.2 (Release 13)
August 2002 Third printing Revised for Version 1.2
June 2004 Online only Revised for Version 2.0 (Release 14)
October 2004 Fourth printing Revised for Version 2.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.2 (Release 14SP2)
June 2005 Fifth printing Minor revision for Version 2.2
September 2005 Online only Revised for Version 2.3 (Release 14SP3)
March 2006 Online only Revised for Version 2.4 (Release 2006a)
September 2006 Online only Revised for Version 2.4.1 (Release 2006b)

Contents

Getting Started

1
What Is the Instrument Control Toolbox? 1-2

Exploring the Instrument Control Toolbox 1-2
Learning About Instrument Control Toolbox 1-3
Using the Documentation Examples 1-3

Toolbox Components . 1-5
M-File Functions . 1-6
The Interface Driver Adaptor . 1-7

Understanding the Toolbox Capabilities 1-8
Overview Help . 1-8
Documentation Examples . 1-8
Demos . 1-8

Installation Information . 1-10
Toolbox Installation . 1-10
Hardware and Driver Installation . 1-10

Examining Your Hardware Resources 1-12
instrhwinfo . 1-12
The Test & Measurement Tool (tmtool) 1-16
Viewing the IVI Configuration Store 1-18

Communicating with Your Instrument 1-21
Communicating with a GPIB Instrument 1-21
Communicating with a GPIB-VXI Instrument 1-22
Communicating with a Serial Port Instrument 1-24
Communicating with a GPIB Instrument Using a Device

Object . 1-25

General Preferences for Instrument Control 1-27
MATLAB Instrument Driver Editor 1-27
MATLAB Instrument Driver Testing Tool 1-28

v

Device Objects . 1-29
IVI Configuration Store . 1-29

Getting Help . 1-30
The instrhelp Function . 1-30
The propinfo Function . 1-31
Online Support . 1-32

The Instrument Control Session

2
Creating Instrument Objects . 2-3

Interface Objects . 2-3
Device Objects . 2-3

Connecting to the Instrument . 2-5

Configuring and Returning Properties 2-6
Returning Property Names and Property Values 2-6
The Property Inspector . 2-6

Communicating with Your Instrument 2-8
Interface Objects and Instrument Commands 2-8
Device Objects and Instrument Drivers 2-8

Disconnecting and Cleaning Up . 2-9
Disconnecting an Instrument Object 2-9
Cleaning Up the MATLAB Environment 2-9

Summary . 2-10
Advantages of Using Device Objects 2-10
When to Use Interface Objects . 2-10

vi Contents

Using Interface Objects

3
Creating an Interface Object . 3-2

Configuring Properties During Object Creation 3-2
Creating an Array of Instrument Objects 3-3

Connecting to the Instrument . 3-5

Configuring and Returning Properties 3-6
Returning Property Names and Property Values 3-6
Configuring Property Values . 3-9
Specifying Property Names . 3-9
Default Property Values . 3-10
The Property Inspector . 3-10

Writing and Reading Data . 3-12
Writing Data . 3-13
Reading Data . 3-18

Disconnecting and Cleaning Up . 3-24
Disconnecting an Instrument Object 3-24
Cleaning Up the MATLAB Environment 3-24

Controlling Instruments Using the GPIB

4
GPIB Overview . 4-3

What Is GPIB? . 4-3
Important GPIB Features . 4-4
GPIB Lines . 4-5
Status and Event Reporting . 4-10

Creating a GPIB Object . 4-15
The GPIB Object Display . 4-16

Configuring the GPIB Address . 4-18

vii

Writing and Reading Data . 4-19
Rules for Completing Write and Read Operations 4-19
Example: Writing and Reading Text Data 4-20
Example: Reading Binary Data . 4-22
Example: Parsing Input Data Using scanstr 4-25
Example: Understanding EOI and EOS 4-26

Events and Callbacks . 4-29
Example: Introduction to Events and Callbacks 4-29
Event Types and Callback Properties 4-30
Storing Event Information . 4-31
Creating and Executing Callback Functions 4-32
Enabling Callback Functions After They Error 4-34
Example: Using Events and Callbacks to Read Binary

Data . 4-34

Triggers . 4-37
Example: Executing a Trigger . 4-37

Serial Polls . 4-39
Example: Executing a Serial Poll . 4-39

Controlling Instruments Using VISA

5
VISA Overview . 5-3

The GPIB Interface . 5-5
Creating a VISA-GPIB Object . 5-5
The VISA-GPIB Address . 5-7

The VXI Interface . 5-9
Creating a VISA-VXI Object . 5-10
The VISA-VXI Address . 5-12
Register-Based Communication . 5-13

The GPIB-VXI Interface . 5-22
Creating a VISA-GPIB-VXI Object 5-23

viii Contents

The VISA-GPIB-VXI Address . 5-25

The Serial Port Interface . 5-27
Creating a VISA-Serial Object . 5-27
Configuring Communication Settings 5-29

The USB Interface . 5-31
Creating a VISA-USB Object . 5-31
The VISA-USB Address . 5-33

The TCP/IP Interface . 5-35
Creating a VISA-TCPIP Object . 5-35
The VISA-TCPIP Address . 5-37

The RSIB Interface . 5-39
Creating a VISA-RSIB Object . 5-39
The VISA-RSIB Address . 5-41

Controlling Instruments Using the Serial Port

6
Serial Port Overview . 6-2

What Is Serial Communication? . 6-2
The Serial Port Interface Standard 6-2
Connecting Two Devices with a Serial Cable 6-3
Serial Port Signals and Pin Assignments 6-4
Serial Data Format . 6-8
Finding Serial Port Information for Your Platform 6-12

Creating a Serial Port Object . 6-15
The Serial Port Object Display . 6-16

Configuring Communication Settings 6-17

Writing and Reading Data . 6-18
Asynchronous Write and Read Operations 6-18
Rules for Completing Write and Read Operations 6-19

ix

Example: Writing and Reading Text Data 6-20

Events and Callbacks . 6-23
Event Types and Callback Properties 6-23
Storing Event Information . 6-24
Example: Using Events and Callbacks 6-26

Using Control Pins . 6-28
Signaling the Presence of Connected Devices 6-28
Controlling the Flow of Data: Handshaking 6-31

Controlling Instruments Using TCP/IP and UDP

7
TCP/IP and UDP Overview . 7-2

Creating a TCPIP Object . 7-4
The TCPIP Object Display . 7-5
Example: Communicating with a Remote Host 7-6
Example: Server Drops the Connection 7-7

Creating a UDP Object . 7-10
The UDP Object Display . 7-11
Example: Communicating Between Two Hosts 7-12

Writing and Reading Data . 7-14
Rules for Completing Write and Read Operations 7-14
Example: Writing and Reading Data with a TCPIP

Object . 7-15
Example: Writing and Reading Data with a UDP Object . . 7-18

Events and Callbacks . 7-21
Event Types and Callback Properties 7-21
Storing Event Information . 7-22
Example: Using Events and Callbacks 7-24

x Contents

Using Device Objects

8
Device Object Overview . 8-2

What Are Device Objects? . 8-2
Device Objects for MATLAB Instrument Drivers 8-3

Creating and Connecting Device Objects 8-5
Device Objects for MATLAB Interface Drivers 8-5
Device Objects for VXIplug&play and IVI Drivers 8-7
Connecting the Device Object . 8-7

Communicating with Instruments 8-9
Configuring Instrument Settings . 8-9
Calling Device Object Methods . 8-10
Control Commands . 8-12

Device Groups . 8-14
Example: Using Device Groups to Access Instrument

Data . 8-14

Using VXIplug&play Drivers

9
Overview . 9-2

VISA Setup . 9-2
Other Software Requirements . 9-2

VXIplug&play Drivers . 9-3
Installation . 9-3
Creating a MATLAB VXIplug&play Instrument Driver . . 9-4
Constructing Device Objects Using a MATLAB

VXIplug&play Instrument Driver 9-6

xi

Using IVI Drivers

10
Overview . 10-2

VISA Setup . 10-2
IVI Shared Components . 10-2
IVI Configuration Store Overview . 10-3

IVI Drivers . 10-4
IVI-C and IVI-COM . 10-4
Installation . 10-4
MATLAB IVI Instrument Drivers . 10-6
Constructing Device Objects Using a MATLAB IVI

Instrument Driver . 10-9

IVI Configuration Store . 10-11
Components . 10-11
Configuring . 10-12

Using Generic Instrument Drivers

11
Overview . 11-2

Example — Writing a Generic Driver 11-3
Creating the Driver and Defining Its Initialization

Behavior . 11-3
Defining Properties . 11-5
Defining Functions . 11-8

Example — Using a Generic Driver with the Test &
Measurement Tool . 11-9
Creating and Connecting the Device Object 11-9
Accessing Properties . 11-10
Using Functions . 11-11

xii Contents

Example — Using a Generic Driver at the Command
Line . 11-13
Creating and Connecting the Device Object 11-13
Accessing Properties . 11-14
Using Functions . 11-15

Saving and Loading the Session

12
Saving and Loading Instrument Objects 12-2

Saving Instrument Objects to an M-File 12-2
Saving Objects to a MAT-File . 12-4

Debugging: Recording Information to Disk 12-6
Example: Introduction to Recording Information 12-6
Creating Multiple Record Files . 12-7
Specifying a Filename . 12-7
The Record File Format . 12-8
Example: Recording Information to Disk 12-10

The Test & Measurement Tool

13
Overview . 13-2

Instrument Control Toolbox Support 13-2
The Tree . 13-3

Using the Test & Measurement Tool 13-4
Hardware . 13-4
Instrument Objects . 13-12
Instrument Drivers . 13-16

xiii

The Instrument Driver Editor

14
Overview . 14-2

What Is a MATLAB Instrument Driver? 14-2
How Does a MATLAB Instrument Driver Work? 14-3
Why Use a MATLAB Instrument Driver? 14-3

Creating MATLAB Instrument Drivers 14-5
Driver Components . 14-5
MATLAB Instrument Driver Editor Features 14-6
Saving MATLAB Instrument Drivers 14-6
Driver Summary and Control Commands 14-6
Initialization and Cleanup . 14-11

Properties . 14-18
Property Components . 14-18
Examples of Properties . 14-21

Functions . 14-34
Function Components . 14-34
Examples of Functions . 14-35

Groups . 14-46
Group Components . 14-46
Examples of Groups . 14-47

Using Existing Drivers . 14-66
Modifying MATLAB Instrument Drivers 14-66
Importing VXIplug&play and IVI Drivers 14-67

The Instrument Driver Testing Tool

15
Overview . 15-2

Drivers . 15-2
Test Structure . 15-2
Starting . 15-3

xiv Contents

Example . 15-4

Setting Up Your Test . 15-5
The Test File . 15-5
Providing a Name and Description 15-5
Specifying the Driver . 15-5
Specifying an Interface . 15-5
Setting Test Preferences . 15-5
Example — Setting Up a Driver Test 15-6

Defining Test Steps . 15-11
Test Step: Set Property . 15-11
Test Step: Get Property . 15-14
Test Step: Properties Sweep . 15-17
Test Step: Function . 15-21

Saving Your Test . 15-25
Saving the Test File . 15-25

Testing and Results . 15-27
Running All Steps . 15-27
Partial Testing . 15-29
Exporting Results . 15-29
Saving Results . 15-30

Using the Instrument Control Toolbox Block
Library

16
Overview . 16-2

Example: Sending and Receiving Data Through a Serial
Port Loopback . 16-3
Step 1: Open the Block Library . 16-4
Step 2: Create a New Model . 16-5
Step 3: Drag the Instrument Control Toolbox Blocks into

the Model . 16-6
Step 4: Drag Other Blocks to Complete the Model 16-7

xv

Step 5: Connect the Blocks . 16-9
Step 6: Specify the Block Parameter Values 16-10
Step 7: Run the Simulation . 16-12

Functions — By Category

17
Instrument Object Creation . 17-2

Interface Object . 17-2
Device Object . 17-2

State Change . 17-2
Interface Object . 17-3
Device Object . 17-3

Property Display and Configuration 17-3

Reading Data . 17-3

Writing Data . 17-4

Information and Help . 17-5

Graphical Tools . 17-5
Interface Object . 17-5
Device Object . 17-5

General Purpose . 17-6

Interface Objects . 17-7
GPIB . 17-7
Serial Port . 17-8
TCP/IP . 17-8
UDP . 17-8
VISA-GPIB . 17-8
VISA-GPIB-VXI . 17-8
VISA-Serial . 17-9

xvi Contents

VISA-VXI . 17-9

Device Objects . 17-10

IVI Configuration Store Objects . 17-10

Functions — Alphabetical List

18

Properties — By Category

19
Interface Object Base Properties . 19-2

Writing Data . 19-2
Reading Data . 19-2
Recording Data . 19-3
Callbacks . 19-3
General Purpose . 19-4

Interface-Specific Properties . 19-5
GPIB . 19-5
Serial Port . 19-6
TCPIP . 19-7
UDP . 19-7
VISA-GPIB . 19-8
VISA-GPIB-VXI . 19-8
VISA-RSIB . 19-9
VISA-Serial . 19-10
VISA-TCPIP . 19-10
VISA-USB . 19-11
VISA-VXI . 19-11

Device Object Base Properties . 19-13

IVI Configuration Store Object Properties 19-14

xvii

Properties — Alphabetical List

20

Blocks — Alphabetical List

21

Vendor Driver Requirements and Limitations

A
Driver Requirements . A-2

GPIB Driver Limitations . A-3
Advantech . A-3
Agilent Technologies . A-3
Capital Equipment Corporation . A-4
ICS Electronics . A-4
IOTech . A-5
Keithley . A-5
Measurement Computing Corporation A-6

VISA Driver Limitations . A-7
Agilent Technologies . A-7
National Instruments . A-7

Bibliography

B

Index

xviii Contents

1

Getting Started

This chapter provides a brief overview of the Instrument Control Toolbox and
its documentation. Also provided is the information you need to get started
with the Instrument Control Toolbox. The sections are as follows.

What Is the Instrument Control
Toolbox? (p. 1-2)

The toolbox and the kinds of tasks
it can perform

Toolbox Components (p. 1-5) The M-files and interface driver
adaptors that compose the toolbox

Understanding the Toolbox
Capabilities (p. 1-8)

Resources to help you understand
the toolbox capabilities including
demos and documentation examples

Installation Information (p. 1-10) How to determine whether the
toolbox is installed on your system

Examining Your Hardware
Resources (p. 1-12)

Return hardware-related
information visible to the toolbox
including the installed adaptors and
the syntax for creating instrument
objects.

Communicating with Your
Instrument (p. 1-21)

Examples that show you how to
communicate with instruments that
support the GPIB, GPIB-VXI, and
serial port interfaces

General Preferences for Instrument
Control (p. 1-27)

MATLAB preferences related to
Instrument Control Toolbox

Getting Help (p. 1-30) Getting help using the Help browser,
M-file help, and other methods

1 Getting Started

What Is the Instrument Control Toolbox?
The Instrument Control Toolbox is a collection of M-file functions built on
the MATLAB® technical computing environment. The toolbox provides you
with these features:

• A framework for communicating with instruments that support the GPIB
interface (IEEE-488), the VISA standard, and the TCP/IP and UDP
protocols. Note that the toolbox extends the basic serial port features
included with MATLAB.

• Support for IVI, VXIplug&play, and MATLAB instrument drivers

• Functions for transferring data between MATLAB and your instrument:

- The data can be binary (numerical) or text.

- The transfer can be synchronous and block the MATLAB command line,
or asynchronous and allow access to the MATLAB command line.

• Event-based communication

• Functions for recording data and event information to a text file

• Tools that facilitate instrument control in an easy-to-use graphical
environment

The MathWorks provides several related products that are especially relevant
to the kinds of tasks you can perform with the Instrument Control Toolbox.
For more information about any of these products, see

http://www.mathworks.com/products/instrument/related.jsp

Exploring the Instrument Control Toolbox
A list of the toolbox functions is available to you by typing

help instrument

You can view the code for any function by typing

type function_name

1-2

http://www.mathworks.com/products/instrument/related.jsp

What Is the Instrument Control Toolbox?

You can view the help for any function by typing

instrhelp function_name

You can change the way any toolbox function works by copying and renaming
the M-file, then modifying your copy. You can also extend the toolbox by
adding your own M-files, or by using it in combination with other products
such as the MATLAB Report Generator or the Data Acquisition Toolbox.

To use the Instrument Control Toolbox, you should have some familiarity with

• The basic features of MATLAB

• The appropriate commands used to communicate with your instrument.
These commands might use the SCPI language or they might be methods
associated with an IVI, VXIplug&play, or MATLAB instrument driver.

• The features of the interface associated with your instrument

Learning About Instrument Control Toolbox
Start with this chapter, which describes how to examine your hardware
resources, how to communicate with your instrument, how to get online
help, and so on. Then read Chapter 2, “The Instrument Control Session”
which provides a framework for constructing instrument control applications.
Depending on the interface used by your instrument, you might then want
to read the appropriate interface-specific chapter.

If you want detailed information about a specific function, refer to Chapter 18,
“Functions — Alphabetical List”. If you want detailed information about a
specific property, refer to Chapter 20, “Properties — Alphabetical List”.

Using the Documentation Examples
The examples in this guide use specific instruments such as a Tektronix
TDS 210 two-channel oscilloscope or an Agilent 33120A function generator.
Additionally, the GPIB examples use a National Instruments GPIB controller
and the serial port examples use the COM1 serial port. The string commands
written to these instruments are often unique to the vendor, and the address
information such as the board index or primary address associated with the
hardware reflects a specific configuration.

1-3

1 Getting Started

These documentation examples are collected in the example index, which is
available through the Help browser. You should modify the examples to work
with your specific hardware configuration.

1-4

Toolbox Components

Toolbox Components
The Instrument Control Toolbox consists of two distinct components: M-file
functions and interface driver adaptors. These components allow you to
pass information between MATLAB and your instrument. For example,
the following diagram shows how information passes from MATLAB to an
instrument via the GPIB driver and the GPIB controller.

1-5

1 Getting Started

The preceding diagram illustrates how information flows from component to
component. Information consists of

• Property values

You define the behavior of your instrument control application by
configuring property values. In general, you can think of a property as a
characteristic of the toolbox or of the instrument that can be configured to
suit your needs.

• Data

You can write data to the instrument and read data from the instrument.
Data can be binary (numerical) or formatted as text. Writing text often
involves writing string commands that change hardware settings, or
prepare the instrument to return data or status information, while writing
binary data involves writing numerical values such as calibration or
waveform data.

• Events

An event occurs after a condition is met and might result in one or more
callbacks. Events can be generated only after you configure the associated
properties. For example, you can use events to analyze data after a certain
number of bytes are read from the instrument, or display a message to the
MATLAB command line after an error occurs.

M-File Functions
To perform any task within your instrument control application, you must
call M-file functions from the MATLAB environment. Among other things,
these functions allow you to

• Create instrument objects, which provide a gateway to your instrument’s
capabilities and allow you to control the behavior of your application.

• Connect the object to the instrument.

• Configure property values.

• Write data to the instrument, and read data from the instrument.

• Examine your hardware resources and evaluate your application status.

1-6

Toolbox Components

For a listing of all Instrument Control Toolbox functions, refer to Chapter 18,
“Functions — Alphabetical List”. You can also display the toolbox functions
by typing

help instrument

The Interface Driver Adaptor
The interface driver adaptor (or just adaptor) is the link between the toolbox
and the interface driver. The adaptor’s main purpose is to pass information
between MATLAB and the interface driver. Interface drivers are provided by
your instrument vendor. For example, if you are communicating with an
instrument using a National Instruments GPIB controller, then an interface
driver such as NI-488.2 must be installed on your platform. Note that
interface drivers are not installed as part of the Instrument Control Toolbox.

The Instrument Control Toolbox provides adaptors for the GPIB interface and
the VISA standard. The serial port, TCP/IP, and UDP interfaces do not require
an adaptor. The supported interfaces and the adaptor names are listed below.

Supported Interfaces and Adaptor Names

Interface Adaptor Name

GPIB advantech, agilent, cec, contec, ics, iotech,
keithley, mcc, ni

Serial port N/A

TCP/IP N/A

UDP N/A

VISA standard agilent, ni, tek

As described in “Examining Your Hardware Resources” on page 1-12, you
can list the supported interfaces and adaptor names with the instrhwinfo
function. For a list of vendor driver requirements and limitations, refer to
Appendix A, “Vendor Driver Requirements and Limitations”.

1-7

1 Getting Started

Understanding the Toolbox Capabilities
In addition to the printed and online documentation, the Instrument Control
Toolbox provides these resources to help you understand the product
capabilities:

• “Overview Help” on page 1-8

• “Documentation Examples” on page 1-8

• “Demos” on page 1-8

Overview Help
The overview help lists the toolbox functions grouped by usage. You can
display this information by typing

help instrument

You can view the code for many functions by typing

type function_name

Documentation Examples
This guide provides detailed examples that show you how to communicate
with all supported interface types. These examples are collected in the
example index, which is available through the Help browser.

The examples use specific peripheral instruments, GPIB controllers, string
commands, address information, and so on. If your instrument accepts
different string commands, or if your hardware is configured to use different
address information, you should modify the examples accordingly.

Demos
The toolbox includes a large collection of tutorial demos, which you can access
through the Help browser Demos pane. Use the following command to open
the Help browser to the toolbox demos.

demo toolbox 'Instrument Control'

1-8

Understanding the Toolbox Capabilities

Note that the tutorials use prerecorded data. Therefore, you do not need an
instrument connected to your computer to use these demos.

1-9

1 Getting Started

Installation Information
To communicate with your instrument from the MATLAB environment, these
components must be installed:

• MATLAB 7

• Instrument Control Toolbox

Additionally, you might need to install hardware such as a GPIB controller
and vendor-specific software such as drivers, support libraries, and so on.
For a complete list of all supported vendors, refer to “The Interface Driver
Adaptor” on page 1-7.

Toolbox Installation
To determine if the Instrument Control Toolbox is installed on your system,
type

ver

at the MATLAB prompt. MATLAB displays information about the version
of MATLAB you are running, including a list of installed add-on products
and their version numbers. Check the list to see if the Instrument Control
Toolbox appears.

For information about installing the toolbox, refer to the Installation
Guide for your platform. If you experience installation difficulties, look
for the installation and license information at the MathWorks Web site
(http://www.mathworks.com/support).

Hardware and Driver Installation
Installation of hardware devices such as GPIB controllers, instrument drivers,
support libraries, and so on is described in the documentation provided by the
instrument vendor. Many vendors provide the latest drivers through their
Web site. For a list of vendor driver requirements and limitations, refer to
Appendix A, “Vendor Driver Requirements and Limitations”.

1-10

http://www.mathworks.com/support

Installation Information

Note You must install all necessary device-specific software provided by the
instrument vendor in addition to the Instrument Control Toolbox.

1-11

1 Getting Started

Examining Your Hardware Resources

instrhwinfo
You can examine the hardware-related resources visible to the toolbox with
the instrhwinfo function. The specific information returned by instrhwinfo
depends on the supplied arguments, and is divided into these categories:

• “General Toolbox Information” on page 1-12

• “Interface Information” on page 1-12

• “Adaptor Information” on page 1-13

• “Instrument Object Information” on page 1-15

• “Installed Driver Information” on page 1-15

General Toolbox Information
To display general information about the Instrument Control Toolbox,

instrhwinfo

MATLABVersion: '7.0 (R14)'
SupportedInterfaces: {'gpib' 'serial' 'visa' 'tcpip' 'udp'}

SupportedDrivers: {'matlab' 'vxipnp' 'ivi'}
ToolboxName: 'Instrument Control Toolbox'

ToolboxVersion: '2.0 (R14)'

Note that the SupportedInterfaces and SupportedDrivers fields list
the interfaces and drivers supported by the toolbox, not necessarily those
installed on your computer.

Interface Information
To display information about a specific interface, you supply the interface
name as an argument to instrhwinfo. The interface name can be gpib,
serial, tcpip, udp, or visa.

For the GPIB and VISA interfaces, the information includes installed
adaptors. For the serial port interface, the information includes the available

1-12

Examining Your Hardware Resources

ports. For the TCP/IP and UDP interfaces, the information includes the local
host address. For example, to display the GPIB interface information,

out = instrhwinfo('gpib')
out =

InstalledAdaptors: {'mcc' 'ni'}
JarFileVersion: 'Version 2.0 (R14)'

The InstalledAdaptors field indicates that the Measurement Computing
Corporation and National Instruments drivers are installed. Therefore,
you can communicate with instruments using GPIB controllers from these
vendors.

Adaptor Information
To display information about a specific installed adaptor, you supply the
interface name and the adaptor name as arguments to instrhwinfo. The
supported interface and adaptor names are given below.

Interface
Name Adaptor Name

gpib advantech, agilent, cec, contec, ics, iotech, keithley,
mcc, ni

visa agilent, ni, tek

The returned information describes the adaptor, the vendor driver, and the
object constructors. For example, to display information for the National
Instruments GPIB adaptor,

ghwinfo = instrhwinfo('gpib','ni')

ghwinfo =

AdaptorDllName: [1x82 char]
AdaptorDllVersion: 'Version 2.0 (R14)'

AdaptorName: 'NI'
InstalledBoardIds: 0

ObjectConstructorName: {'gpib('ni', 0, 2);'}

1-13

1 Getting Started

VendorDllName: 'gpib-32.dll'
VendorDriverDescription: 'NI-488'

The ObjectConstructorName field provides the syntax for creating a GPIB
object for the National Instruments adaptor. In this example, the GPIB
controller has board index 0 and the instrument has primary address 2.

g = gpib('ni',0,2);

To display information for the Tektronix VISA adaptor,

vhwinfo = instrhwinfo('visa','tek')
vhwinfo =

AdaptorDllName: [1x83 char]
AdaptorDllVersion: 'Version 2.0 (R14 Beta 1)'

AdaptorName: 'TEK'
AvailableChassis: []

AvailableSerialPorts: {2x1 cell}
InstalledBoardIds: 0

ObjectConstructorName: {3x1 cell}
SerialPorts: {2x1 cell}

VendorDllName: 'visa32.dll'
VendorDriverDescription: 'Tektronix VISA Driver'

VendorDriverVersion: 2.0500

The available VISA object constructor names are shown below.

vhwinfo.ObjectConstructorName
ans =

'visa('tek', 'ASRL1::INSTR');'
'visa('tek', 'ASRL2::INSTR');'
'visa('tek', 'GPIB0::1::INSTR');'

The ObjectConstructorName field provides the syntax for creating a VISA
object for the GPIB and serial port interfaces. In this example, the GPIB
controller has board index 0 and the instrument has primary address 1.

vg = visa('tek','GPIB0::1::INSTR');

1-14

Examining Your Hardware Resources

Instrument Object Information
To display information about a specific instrument object, you supply the
object as an argument to instrhwinfo. For example, to display information
for the GPIB object created in the preceding section (“Adaptor Information”
on page 1-13),

ghwinfo = instrhwinfo(g)
ghwinfo =

AdaptorDllName: [1x82 char]
AdaptorDllVersion: 'Version 2.0 (R14)'

AdaptorName: 'NI'
VendorDllName: 'gpib-32.dll'

VendorDriverDescription: 'NI-488'

To display information for the VISA-GPIB object created in the preceding
section (“Adaptor Information” on page 1-13),

vghwinfo = instrhwinfo(vg)
vghwinfo =

AdaptorDllName: [1x83 char]
AdaptorDllVersion: 'Version 2.0 (R14)'

AdaptorName: 'TEK'
VendorDllName: 'visa32.dll'

VendorDriverDescription: 'Tektronix VISA Driver'
VendorDriverVersion: 2.0500

Alternatively, you can return hardware information via the Workspace
browser by right-clicking an instrument object, and selecting Display
Hardware Info from the context menu.

Installed Driver Information
To display information about a supported driver type, you supply the driver
type as an argument to instrhwinfo. For example, to display information for
the IVI configuration,

instrhwinfo('ivi')

ans =

LogicalNames: {'MyIviCLogical' 'MyScope' 'TekScope'}

1-15

1 Getting Started

ProgramIDs: {'TekScope.TekScope'}

Modules: {'ag3325b'}

ConfigurationServerVersion: '1.3.1.0'

MasterConfigurationStore: 'D:\Apps\IVI\Data\IviConfigurationStore.xml'

IVIRootPath: 'D:\Apps\IVI\'

To display information about a specific driver or resource, you supply the
driver name in addition to the type as an argument to instrhwinfo. For
example, to display information about the ag3325b VXIplug&play driver,

instrhwinfo('vxipnp', 'ag3325b')
ans =

Manufacturer: 'Agilent Technologies'
Model: 'Agilent 3325B Synthesizer/Func. Gen.'

DriverVersion: '4.1'
DriverDllName: 'C:\VXIPNP\WINNT\bin\ag3325b_32.dll'

The Test & Measurement Tool (tmtool)
You can use the Test & Measurement Tool to manage the resources of your
instrument control session. Some of the tool’s features enable you to

• Search for installed adaptors

• Examine available hardware

• Examine installed drivers

• Examine instrument objects

You open the Test & Measurement Tool by typing

tmtool

Hardware
Expand the Hardware node in the tree to list the supported interfaces.

Right-click on the Hardware node to scan for instrument hardware. The
interface nodes expand to include entries for each instrument found by the
scan.

1-16

Examining Your Hardware Resources

Installed Drivers
The Test & Measurement Tool can display your installed drivers. The three
categories of drivers are MATLAB Instrument Drivers, VXIplug&play
Drivers, and IVI, as shown below under the expanded Instrument Drivers
node.

Right-click on the Instrument Drivers node to scan for installed drivers.
The driver-type nodes expand to include entries for each driver found by the
scan. Note that for MATLAB instrument drivers and VXIplug&play drivers,
the installation of a driver requires only the presence of a driver file. For
IVI, installation involves an IVI configuration store; see “Viewing the IVI
Configuration Store” on page 1-18.

1-17

1 Getting Started

The Test & Measurement Tool GUI includes embedded help. For further
details about the Test & Measurement Tool and its capabilities, see Chapter
13, “The Test & Measurement Tool”.

Viewing the IVI Configuration Store
An IVI configuration store greatly enhances instrument interchangeability by
providing the means to configure the relationship between drivers and I/O
interface references outside of the application. For details of the components
of an IVI configuration store, see “IVI Configuration Store” on page 10-11.

Command-Line Configuration
You can use command-line functions to examine and configure your IVI
configuration store. To see what IVI configuration store elements are
available, use instrhwinfo to identify the existing logical names.

instrhwinfo('ivi')
ans =

LogicalNames: {'MainScope', 'FuncGen'}
ProgramIDs: {'TekScope.TekScope','Agilent33250'}

Modules: {'ag3325b', 'hpe363xa'}
ConfigurationServerVersion: '1.3.1.0'

1-18

Examining Your Hardware Resources

MasterConfigurationStore: 'C:\Program Files\IVI\Data\
IviConfigurationStore.xml'

IVIRootPath: 'C:\Program Files\IVI\'

Use instrhwinfo with a logical name as an argument to see the details of
that logical name’s configuration.

instrhwinfo('ivi','MainScope')
ans =

DriverSession: 'TekScope.DriverSession'
HardwareAsset: 'TekScope.Hardware'

SoftwareModule: 'TekScope.Software'
IOResourceDescriptor: 'GPIB0::13::INSTR'

SupportedInstrumentModels: 'TekScope 5000, 6000 and 7000 series'
ModuleDescription: 'TekScope software module desc'

ModuleLocation: ''

You create and configure elements in the IVI configuration store by using the
IVI configuration store object functions add, commit, remove, and update. For
further details, see the reference pages for these functions.

Test & Measurement Tool
You can use the Test & Measurement Tool to examine or configure your IVI
configuration store. Open the tool by typing

tmtool

Expand the Instrument Drivers node and click IVI.

1-19

1 Getting Started

You see a tab for each type of IVI configuration store element. This figure
shows the available driver sessions in the current IVI configuration
store. For the selected driver session, you can use any available software
module or hardware asset. This figure shows the configuration for the
driver session TekScope.DriverSession, which uses the software module
TekScope.Software and the hardware asset TekScope.Hardware.

1-20

Communicating with Your Instrument

Communicating with Your Instrument
This section provides basic examples that show you how to communicate
with a

• GPIB instrument

• GPIB-VXI instrument

• Serial port instrument

• GPIB instrument using a device object

Each example illustrates a typical instrument control session. The
instrument control session comprises all the steps you are likely to take when
communicating with a supported instrument. You should keep these steps in
mind when constructing your own instrument control applications.

The examples also use specific instrument addresses, SCPI commands, and so
on. If your instrument requires different parameters, or if it does not support
the SCPI language, you should modify the examples accordingly.

If you want detailed information about any functions that are used, refer to
Chapter 17, “Functions — By Category”. If you want detailed information
about any properties that are used, refer to Chapter 19, “Properties — By
Category”.

Communicating with a GPIB Instrument
This example illustrates how to communicate with a GPIB instrument. The
GPIB controller is a National Instruments AT-GPIB card. The instrument
is an Agilent 33120A Function Generator, which is generating a 2-volt
peak-to-peak signal.

You should modify this example to suit your specific instrument control
application needs. If you want detailed information about communicating
with an instrument via GPIB, refer to Chapter 4, “Controlling Instruments
Using the GPIB”.

1-21

1 Getting Started

1 Create an interface object — Create the GPIB object g associated with a
National Instruments GPIB board with board index 0, and an instrument
with primary address 1.

g = gpib('ni',0,1);

2 Connect to the instrument — Connect g to the instrument.

fopen(g)

3 Configure property values —Configure g to assert the EOI line when
the line feed character is written to the instrument, and to complete read
operations when the line feed character is read from the instrument.

set(g,'EOSMode','read&write')
set(g,'EOSCharCode','LF')

4 Write and read data — Change the instrument’s peak-to-peak voltage
to three volts by writing the Volt 3 command, query the peak-to-peak
voltage value, and then read the voltage value.

fprintf(g,'Volt 3')
fprintf(g,'Volt?')
data = fscanf(g)
data =
+3.00000E+00

5 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, remove it from memory, and remove it
from the MATLAB workspace.

fclose(g)
delete(g)
clear g

Communicating with a GPIB-VXI Instrument
This example illustrates how to communicate with a VXI instrument via a
GPIB controller using the VISA standard provided by Agilent Technologies.

The GPIB controller is an Agilent E1406A command module in VXI slot
0. The instrument is an Agilent E1441A Function/Arbitrary Waveform

1-22

Communicating with Your Instrument

Generator in VXI slot 1, which is outputting a 2 volt peak-to-peak signal. The
GPIB controller communicates with the instrument over the VXI backplane.

You should modify this example to suit your specific instrument control
application needs. If you want detailed information about communicating
with an instrument using VISA, refer to Chapter 5, “Controlling Instruments
Using VISA”.

1 Create an instrument object — Create the VISA-GPIB-VXI object v
associated with the E1441A instrument located in chassis 0 with logical
address 80.

v = visa('agilent','GPIB-VXI0::80::INSTR');

2 Connect to the instrument — Connect v to the instrument.

fopen(v)

3 Configure property values — Configure v to complete a read operation
when the line feed character is read from the instrument.

set(v,'EOSMode','read')
set(v,'EOSCharCode','LF')

4 Write and read data — Change the instrument’s peak-to-peak voltage
to three volts by writing the Volt 3 command, query the peak-to-peak
voltage value, and then read the voltage value.

fprintf(v,'Volt 3')
fprintf(v,'Volt?')
data = fscanf(v)
data =
+3.00000E+00

5 Disconnect and clean up — When you no longer need v, you should
disconnect it from the instrument, remove it from memory, and remove it
from the MATLAB workspace.

fclose(v)
delete(v)
clear v

1-23

1 Getting Started

Communicating with a Serial Port Instrument
This example illustrates how to communicate with an instrument via the
serial port. The instrument is a Tektronix TDS 210 two-channel digital
oscilloscope connected to the COM1 port of a PC, and configured for a baud
rate of 4800 and a carriage return (CR) terminator.

You should modify this example to suit your specific instrument control
application needs. If you want detailed information about communicating with
an instrument connected to the serial port, refer to Chapter 6, “Controlling
Instruments Using the Serial Port”.

1 Create an instrument object — Create the serial port object s associated
with the COM1 serial port.

s = serial('COM1');

2 Configure property values — Configure s to match the instrument’s
baud rate and terminator.

set(s,'BaudRate',4800)
set(s,'Terminator','CR')

3 Connect to the instrument — Connect s to the instrument. This step
occurs after property values are configured because serial port instruments
can transfer data immediately after the connection is established.

fopen(s)

4 Write and read data — Write the *IDN? command to the instrument and
then read back the result of the command. *IDN? queries the instrument
for identification information.

fprintf(s,'*IDN?')
out = fscanf(s)
out =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

5 Disconnect and clean up — When you no longer need s, you should
disconnect it from the instrument, remove it from memory, and remove it
from the MATLAB workspace.

fclose(s)

1-24

Communicating with Your Instrument

delete(s)
clear s

Communicating with a GPIB Instrument Using a
Device Object
This example illustrates how to communicate with a GPIB instrument
through a device object. The GPIB controller is a Keithley card, and the
instrument is an Agilent 33120A Function Generator, which you set to
produce a 1 volt peak-to-peak sine wave at 1,000 Hz. Device objects make use
of instrument drivers; this example uses the driver agilent_33120a.mdd.

You should modify this example to suit your specific instrument control
application needs. If you want detailed information about communicating
through device objects, see Chapter 8, “Using Device Objects”.

1 Create instrument objects — Create the GPIB object g associated with a
Keithley GPIB board with board index 0, and an instrument with primary
address 4. Then create the device object d associated with the interface
object g, and with the instrument driver agilent_33120a.mdd.

g = gpib('keithley',0,4);
d = icdevice('agilent_33120a.mdd',g);

2 Connect to the instrument — Connect d to the instrument.

connect(d)

3 Call device object method — Use the devicereset method to set the
generator to a known configuration. The behavior of the generator for this
method is defined in the instrument driver.

devicereset(d)

4 Configure property values — Configure d to set the amplitude and
frequency for the signal from the function generator.

set(d,'Amplitude',1.00,'AmplitudeUnits','vpp')
set(d,'Frequency',1000)

1-25

1 Getting Started

5 Disconnect and clean up — When you no longer need d and g, you
should disconnect from the instrument, remove the objects from memory,
and remove them from the MATLAB workspace.

disconnect(d)
delete([d g])
clear d g

1-26

General Preferences for Instrument Control

General Preferences for Instrument Control
You access the general preferences from your MATLAB desktop environment
by selecting File > Preferences. The Preferences dialog box appears.
Select Instrument Control in the tree, as shown below.

MATLAB Instrument Driver Editor
This section of the dialog box contains preferences related to the midedit tool.

There is a check box labeled Show dialog prompt when editing files
that do not exist. This grayed out option can be unchecked by acting on
the prompt itself.

If you open the MATLAB Instrument Driver Editor while specifying a driver
file that does not exist, you get a dialog prompt asking if you want to create
a new driver file.

For example, the command

1-27

1 Getting Started

midedit ('newdriver')

generates the prompt

If you check Do not show this prompt again, then the corresponding check
box in the Preferences dialog box is unselected. To reactivate the prompt,
check the option on the Preferences dialog box.

MATLAB Instrument Driver Testing Tool
This section of the dialog box contains preferences related to the midtest tool.

There is a check box labeled Show dialog prompt when editing files
that do not exist. This grayed out option can be unchecked by acting on
the prompt itself.

If you open the MATLAB Instrument Driver Testing tool while specifying a
driver test file that does not exist, you get a dialog prompt asking if you want
to create a new test file.

For example, the command

midtest ('newtest')

generates the prompt

1-28

General Preferences for Instrument Control

If you check Do not show this prompt again, then the corresponding check
box in the Preferences dialog box is selected. To reactivate the prompt,
check the option on the Preferences dialog box.

Device Objects
This section of the dialog box contains preferences related to the construction
and use of device objects for VXIplug&play and IVI-C drivers.

Here you set the minimum number of properties and functions required to
create a device object group, and the default size of character arrays passed as
output arguments to device object functions.

Set the default size for these character arrays in the Preferences dialog box
to ensure that they are large enough to accommodate any string returned to
them by any device object functions. You can reduce the default character
array size to avoid unnecessary memory usage, as long as they are still large
enough to accommodate any expected strings.

IVI Configuration Store
This section of the dialog box contains preferences related to the construction
and use of IVI configuration store objects when working in the Command
Window or in the Test & Measurement Tool (tmtool).

You may select between a master configuration store or a user-defined
configuration store. If you choose a user-defined configuration store, you must
provide its filename.

1-29

1 Getting Started

Getting Help
In addition to this guide, the Instrument Control Toolbox provides you with
these help resources:

• “The instrhelp Function” on page 1-30

• “The propinfo Function” on page 1-31

• “Online Support” on page 1-32

The instrhelp Function
You can use the instrhelp function to

• Display command line help for functions and properties

• List all the functions and properties associated with a specific instrument
object

An instrument object does not need to exist for you to obtain this information.
For example, to display all the functions and properties associated with a
GPIB object, as well as the constructor M-file help,

instrhelp gpib

To display help for the EOIMode property,

instrhelp EOIMode

You can also display help for an existing instrument object. For example, to
display help for the MemorySpace property associated with a VISA-GPIB-VXI
object,

v = visa('agilent','GPIB-VXI0::80::INSTR');
out = instrhelp(v,'MemorySpace');

Alternatively, you can display help via the Workspace browser by right-clicking
an instrument object and selecting Instrument Help from the context menu.

1-30

Getting Help

The propinfo Function
You can use the propinfo function to return the characteristics of Instrument
Control Toolbox properties. For example, you can find the default value for
any property using this function. propinfo returns a structure containing
the fields shown below.

Field Name Description

Type The property data type. Possible values are any,
ASCII value, callback, double, string, and struct.

Constraint The type of constraint on the property value. Possible
values are ASCII value, bounded, callback, enum,
and none.

ConstraintValue The property value constraint. The constraint can be
a range of values or a list of string values.

DefaultValue The property default value.

ReadOnly The condition under which a property is read only.
Possible values are always, never, whileOpen, and
whileRecording.

InterfaceSpecific If the property is interface-specific, a 1 is returned.
If the property is supported for all interfaces, a 0 is
returned.

For example, to display the property characteristics for the EOIMode property
associated with the GPIB object g,

g = gpib('ni',0,2);
EOIinfo = propinfo(g,'EOIMode')

EOIinfo =
Type: 'string'

Constraint: 'enum'
ConstraintValue: {2x1 cell}

DefaultValue: 'on'
ReadOnly: 'never'

InterfaceSpecific: 1

This information tells you that

1-31

1 Getting Started

• The property value data type is a string.

• The property value is constrained as an enumerated list of values.

• There are two possible property values.

• The default value is on.

• The property can be configured at any time (it is never read-only).

• The property is not supported for all interfaces.

To display the property value constraints,

EOIinfo.ConstraintValue
ans =

'on'
'off'

Online Support
For online support of the Instrument Control Toolbox, visit the Web site
http://www.mathworks.com/support/product/IC/. This site includes
documentation, examples, solutions, downloads, system requirements, and
contact information.

1-32

http://www.mathworks.com/support/product/IC/

2

The Instrument Control
Session

The instrument control session consists of the steps you are likely to take
when communicating with your instrument. This chapter highlights some
of the differences between interface objects and device objects for each of
these steps, to help you decide which to use in communicating with your
instrument. Whether you use interface objects or device objects, the basic
steps of the instrument control session remain the same, as outlined by the
sections of this chapter.

Creating Instrument Objects (p. 2-3) Create a MATLAB object that
represents the interface or the
instrument.

Connecting to the Instrument (p. 2-5) Establish a connection between
the object and the interface or
instrument.

Configuring and Returning
Properties (p. 2-6)

Read and write property values
to configure the interface and
instrument settings.

Communicating with Your
Instrument (p. 2-8)

Write commands to the instrument,
read data from the instrument, or
call instrument driver functions.

2 The Instrument Control Session

Disconnecting and Cleaning Up
(p. 2-9)

Disconnect the object, and remove
the object from memory and from
the workspace.

Summary (p. 2-10) Choose whether to use interface
objects or device objects for your
application.

2-2

Creating Instrument Objects

Creating Instrument Objects
Instrument objects are the toolbox components you use to access your
instrument. They provide a gateway to the functionality of your instrument
and allow you to control the behavior of your application. The toolbox supports
two types of instrument objects:

• Interface objects — Interface objects are associated with a specific interface
standard such as GPIB or VISA. They allow you to communicate with any
instrument connected to the interface.

• Device objects — Device objects are associated with a MATLAB instrument
driver. They allow you to communicate with your instrument using
properties and functions defined in the driver for a specific instrument
model.

Interface Objects
An interface object represents a channel of communication. For example, an
interface object might represent a device at address 4 on the GPIB, even
though there is nothing specific about what kind of instrument this may be.

To create an instrument object, you call the constructor for the type of
interface (gpib, serial, tcpip, udp, or visa), and provide appropriate
interface information, such as address for GPIB, remote host for TCP/IP, or
port number for serial.

For detailed information on interface objects and how to create and use them,
see Chapter 3, “Using Interface Objects”.

Device Objects
A device object represents an instrument rather than an interface. As part
of that representation, a device object must also be aware of the instrument
driver.

You create a device object with the icdevice function. A device object requires
a MATLAB instrument driver and some form of instrument interface, which
can be an interface object, a VISA resource name, or an interface implied in
an IVI configuration.

2-3

2 The Instrument Control Session

For detailed information on device objects and how to create and use them,
see Chapter 8, “Using Device Objects”.

2-4

Connecting to the Instrument

Connecting to the Instrument
Before you can use an instrument object to write or read data, you must
connect it to the instrument. You connect an interface object to the instrument
with the fopen function; you connect a device object to the instrument with
the connect function.

You can examine the Status property to verify that the instrument object is
connected to the instrument.

obj.Status
ans =
open

Some properties of the object are read-only while the object is connected and
must be configured before connecting. Examples of interface object properties
that are read-only when the object is connected include InputBufferSize
and OutputBufferSize. You can determine when a property is configurable
with the propinfo function, or by referring to Chapter 20, “Properties —
Alphabetical List”.

2-5

2 The Instrument Control Session

Configuring and Returning Properties
You establish the desired instrument object behavior by configuring property
values. You can configure property values using the set function or the dot
notation, or by specifying property name/property value pairs during object
creation. You can return property values using the get function or the dot
notation.

Interface objects possess two types of properties: base properties and
interface-specific properties. (These properties pertain only to the interface
object itself and to the interface, not to the instrument.) Base properties are
supported for all interface objects (serial port, GPIB, VISA-VXI, and so on),
while interface-specific properties are supported only for objects of a given
interface type. For example, the BaudRate property is supported only for
serial port and VISA-serial objects.

Device objects also possess two types of properties: base properties and
device-specific properties. While device objects possess base properties
pertaining to the object and interface, they also possess any number of
device-specific properties as defined in the instrument driver for configuring
the instrument. For example, a device object representing an oscilloscope
might posses such properties as DisplayContrast, InputRange, and
MeasurementMode. When you set these properties you are directly configuring
the oscilloscope settings.

Returning Property Names and Property Values
Once the instrument object is created, you can use the set function to
return all its configurable properties to a variable or to the command line.
Additionally, if a property has a finite set of string values, set returns these
values.

The Property Inspector
The Property Inspector enables you to inspect and set properties for one or
more instrument objects. It provides a list of all properties and displays
their current values.

Settable properties in the list are associated with an editing device that
is appropriate for the values accepted by the particular property. For

2-6

Configuring and Returning Properties

example, a callback configuration GUI to set ErrorFcn, a pop-up menu to
set RecordMode, and a text field to specify the TimerPeriod. The values for
read-only properties are grayed out.

You open the Property Inspector with the inspect function. Alternatively, you
can open the Property Inspector via the Workspace browser by right-clicking
an instrument object and selecting Call Property Inspector from the
context menu, or by double-clicking the object.

Below is a Property Inspector window for a GPIB interface object.

2-7

2 The Instrument Control Session

Communicating with Your Instrument
Communicating with your instrument involves sending and receiving
commands, settings, responses, and data. The level of communication depends
on the type of instrument object you use.

Interface Objects and Instrument Commands
To communicate through the interface object, you need to send instrument
commands, and you receive information as the instrument sends it. Therefore,
you have to know the syntax specific to the instrument itself. For example, if
the instrument requires the command '*RST' to initiate its action, then that
is exactly the command that must be sent to the interface object.

Text commands and binary data are sent directly to the instrument and
received from the instrument with such functions as fprintf, fwrite, fgets,
fread, and others.

Device Objects and Instrument Drivers
To communicate through a device object, you access object properties with the
set and get commands, and you execute driver functions with the invoke
command. The invoke command for a device object employs methods and
arguments defined by the instrument driver. So using device objects does not
require you to use instrument-specific commands and syntax.

For information on creating, editing, and importing instrument drivers, see
Chapter 14, “The Instrument Driver Editor”.

2-8

Disconnecting and Cleaning Up

Disconnecting and Cleaning Up
When you no longer need an instrument object, you should disconnect it from
the instrument, and clean up the MATLAB environment by removing the
object from memory and from the workspace. These are the steps you take to
end an instrument control session.

Disconnecting an Instrument Object
When you no longer need to communicate with the instrument, you should
disconnect the object. Interface objects are disconnected with the fclose
function; device objects are disconnected with the disconnect function.

You can examine the Status property to verify that the object is disconnected
from the instrument.

obj.Status
ans =
closed

Cleaning Up the MATLAB Environment
When you no longer need the instrument object, you should remove it from
memory with the delete function.

delete(obj)

A deleted instrument object is invalid, which means that you cannot connect
it to the instrument. In this case, you should remove the object from the
MATLAB workspace. To remove instrument objects and other variables from
the MATLAB workspace, use the clear command.

clear obj

If you use clear on an object that is connected to an instrument, the object
is removed from the workspace but remains connected to the instrument.
You can restore cleared instrument objects to MATLAB with the instrfind
function.

2-9

2 The Instrument Control Session

Summary
Should you use interface objects or device objects to communicate with your
instrument? Generally, device objects make instrument control easier and
they offer greater flexibility to the user compared to using interface objects.

Advantages of Using Device Objects
Because of the advantages offered by using device objects for communicating
with your instrument, you should use device objects whenever possible. Some
of these advantages are

• You do not need to know instrument-specific commands

• You can use standard VXIplug&play or IVI instrument drivers provided by
your instrument vendor or other party

• You can use a MATLAB instrument driver to control your instrument. To
get a MATLAB instrument driver, you can

- Convert a VXIplug&play or IVI driver

- Use a MATLAB driver that is shipped with the toolbox

- Create it yourself or modify a similar driver

- Install it from a third party, such as MATLAB Central

You can create, convert, or customize a MATLAB instrument driver with
the MATLAB Instrument Driver Editor tool (midedit).

When to Use Interface Objects
In some circumstances, using device objects to communicate with your
instrument would be impossible or impractical. You might need to use
interface objects if

• Your instrument does not have a standard instrument driver supported
by the Instrument Control Toolbox.

• You are using a streaming application (typically serial, UDP, or TCP/IP
interface) to notify you of some occurrence.

• Your application requires frequent changes to communication channel
settings.

2-10

3

Using Interface Objects

The instrument control session using interface objects consists of all the steps
described in the following sections.

Creating an Interface Object (p. 3-2) Create a MATLAB object that
represents the instrument.

Connecting to the Instrument (p. 3-5) Establish a connection between the
object and the instrument.

Configuring and Returning
Properties (p. 3-6)

Define the instrument object
behavior by assigning values to
properties.

Writing and Reading Data (p. 3-12) Write data to the instrument and
read data from the instrument.

Disconnecting and Cleaning Up
(p. 3-24)

Disconnect the object from the
instrument, and remove the
object from memory and from the
workspace.

The instrument control session is used in many of the documentation
examples included in this guide.

3 Using Interface Objects

Creating an Interface Object
To create an interface object, you call M-file functions called object creation
functions (or object constructors). These M-files are implemented using the
MATLAB object-oriented programming capabilities, which are described in
“Classes and Objects” in the MATLAB documentation. The interface object
creation functions are listed below.

Interface Object Creation Functions

Constructor Description

gpib Create a GPIB object.

serial Create a serial port object.

tcpip Create a TCPIP object.

udp Create a UDP object.

visa Create a VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, or
VISA-serial object.

You can find out how to create an interface object for a particular interface
and adaptor with the ObjectConstructorName field of the instrhwinfo
function. For example, to find out how to create a GPIB object for a National
Instruments GPIB controller,

out = instrhwinfo('gpib','ni');
out.ObjectConstructorName
ans =

'gpib('ni', 0, 1);'

Configuring Properties During Object Creation
Instrument objects contain properties that reflect the functionality of your
instrument. You control the behavior of your instrument control application
by configuring values for these properties.

As described in “Configuring and Returning Properties” on page 3-6, you
configure properties using the set function or the dot notation. You can
also configure properties during object creation by specifying property

3-2

Creating an Interface Object

name/property value pairs. For example, the following command configures
the EOSMode and EOSCharCode properties for the GPIB object g.

g = gpib('ni',0,1,'EOSMode','read','EOSCharCode','CR');

If you specify an invalid property name or property value, the object is not
created. For detailed property descriptions, refer to Chapter 20, “Properties
— Alphabetical List”.

Creating an Array of Instrument Objects
In MATLAB, you can create an array from existing variables by concatenating
those variables. The same is true for instrument objects. For example,
suppose you create the GPIB objects g1 and g2:

g1 = gpib('ni',0,1);
g2 = gpib('ni',0,2);

You can now create an instrument object array consisting of g1 and g2 using
the usual MATLAB syntax. To create the row array x,

x = [g1 g2]
Instrument Object Array

Index: Type: Status: Name:
1 gpib closed GPIB0-1
2 gpib closed GPIB0-2

To create the column array y,

y = [g1;g2];

Note that you cannot create a matrix of instrument objects. For example,
you cannot create the matrix

z = [g1 g2;g1 g2];
??? Error using ==> gpib/vertcat
Only a row or column vector of instrument objects can be created.

Depending on your application, you might want to pass an array of instrument
objects to a function. For example, using one call to the set function, you can
configure both g1 and g2 to the same property value.

3-3

3 Using Interface Objects

set(x,'EOSMode','read')

Refer to Chapter 18, “Functions — Alphabetical List” to see which functions
accept an instrument object array as an input argument.

3-4

Connecting to the Instrument

Connecting to the Instrument
Before you can use the instrument object to write or read data, you must
connect it to the instrument whose address or port is specified in the creation
function. You connect an interface object to the instrument with the fopen
function.

fopen(g)

Some properties are read-only while the object is connected and must be
configured before using fopen. Examples include the InputBufferSize
and the OutputBufferSize properties. You can determine when a property
is configurable with the propinfo function, or by referring to Chapter 20,
“Properties — Alphabetical List”.

Note You can create any number of instrument objects. However, at any
time, you can connect only one instrument object to an instrument with a
given address or port.

You can examine the Status property to verify that the instrument object is
connected to the instrument.

g.Status
ans =
open

As illustrated below, the connection between the instrument object and the
instrument is complete, and you can write and read data.

3-5

3 Using Interface Objects

Configuring and Returning Properties
You establish the desired instrument object behavior by configuring property
values. You can configure property values using the set function or the dot
notation, or by specifying property name/property value pairs during object
creation. You can return property values using the get function or the dot
notation.

Interface objects possess two types of properties: base properties and
interface-specific properties. Base properties are supported for all
interface objects (serial port, GPIB, VISA-VXI, and so on). For example,
the BytesToOutput property is supported for all interface objects.
Interface-specific properties are supported only for objects of a given interface
type. For example, the BaudRate property is supported only for serial port
and VISA-serial objects.

Returning Property Names and Property Values
Once the instrument object is created, you can use the set function to return
all configurable properties to a variable or to the command line. Additionally,
if a property has a finite set of string values, then set also returns these
values.

For example, the configurable properties for the GPIB object g are shown
below. The base properties are listed first, followed by the GPIB-specific
properties.

g = gpib('ni',0,1);
set(g)

ByteOrder: [{littleEndian} | bigEndian]
BytesAvailableFcn
BytesAvailableFcnCount
BytesAvailableFcnMode: [{eosCharCode} | byte]
ErrorFcn
InputBufferSize
Name
OutputBufferSize
OutputEmptyFcn
RecordDetail: [{compact} | verbose]
RecordMode: [{overwrite} | append | index]

3-6

Configuring and Returning Properties

RecordName
Tag
Timeout
TimerFcn
TimerPeriod
UserData

GPIB specific properties:
BoardIndex
CompareBits
EOIMode: [{on} | off]
EOSCharCode
EOSMode: [{none} | read | write | read&write]
PrimaryAddress
SecondaryAddress

You can use the get function to return one or more properties and their
current values to a variable or to the command line.

For example, all the properties and their current values for the GPIB object
g are shown below. The base properties are listed first, followed by the
GPIB-specific properties.

get(g)
ByteOrder = littleEndian
BytesAvailable = 0
BytesAvailableFcn =
BytesAvailableFcnCount = 48
BytesAvailableFcnMode = eosCharCode
BytesToOutput = 0
ErrorFcn =
InputBufferSize = 512
Name = GPIB0-1
OutputBufferSize = 512
OutputEmptyFcn =
RecordDetail = compact
RecordMode = overwrite
RecordName = record.txt
RecordStatus = off
Status = closed

3-7

3 Using Interface Objects

Tag =
Timeout = 10
TimerFcn =
TimerPeriod = 1
TransferStatus = idle
Type = gpib
UserData = []
ValuesReceived = 0
ValuesSent = 0

GPIB specific properties:
BoardIndex = 0
BusManagementStatus = [1x1 struct]
CompareBits = 8
EOIMode = on
EOSCharCode = LF
EOSMode = none
HandshakeStatus = [1x1 struct]
PrimaryAddress = 1
SecondaryAddress = 0

To display the current value for one property, you supply the property name to
get.

get(g,'OutputBufferSize')
ans =

512

To display the current values for multiple properties, you include the property
names as elements of a cell array.

get(g,{'BoardIndex','TransferStatus'})
ans =

[0] 'idle'

You can also use the dot notation to display a single property value.

g.PrimaryAddress
ans =

1

3-8

Configuring and Returning Properties

Configuring Property Values
You can configure property values using the set function

set(g,'EOSMode','read')

or the dot notation.

g.EOSMode = 'read';

To configure values for multiple properties, you can supply multiple property
name/property value pairs to set.

set(g,'EOSCharCode','CR','Name','Test1-gpib')

Note that you can configure only one property value at a time using the dot
notation.

In practice, you can configure many of the properties at any time while the
instrument object exists — including during object creation. However, some
properties are not configurable while the object is connected to the instrument
or when recording information to disk. Use the propinfo function, or refer to
Chapter 20, “Properties — Alphabetical List” for information about when a
property is configurable.

Specifying Property Names
Instrument object property names are presented using mixed case. While this
makes property names easier to read, you can use any case you want when
specifying property names. Additionally, you need use only enough letters to
identify the property name uniquely, so you can abbreviate most property
names. For example, you can configure the EOSMode property in any of these
ways.

set(g,'EOSMode','read')
set(g,'eosmode','read')
set(g,'EOSM','read')

However, when you include property names in an M-file, you should use the
full property name. This practice can prevent problems with future releases
of the Instrument Control Toolbox if a shortened name is no longer unique
because of the addition of new properties.

3-9

3 Using Interface Objects

Default Property Values
If you do not explicitly define a value for a property, then the default value is
used. All configurable properties have default values.

Note Default values are provided for all instrument object properties. For
serial port objects, the default values are provided by your operating system.
For GPIB and VISA instrument objects, the default values are provided
by vendor-supplied tools. However, these settings are overridden by your
MATLAB code, and will have no effect on your instrument control application.

If a property has a finite set of string values, then the default value is
enclosed by {} (curly braces). For example, the default value for the EOSMode
property is none.

set(g,'EOSMode')
[{none} | read | write | read&write]

You can also use the propinfo function, or refer to Chapter 20, “Properties —
Alphabetical List” to find the default value for any property.

The Property Inspector
The Property Inspector enables you to inspect and set properties for one or
more instrument objects. It provides a list of all properties and displays the
current value.

Settable properties in the list are associated with an editing device that
is appropriate for the values accepted by the particular property. For
example, a callback configuration GUI to set ErrorFcn, a pop-up menu to
set RecordMode, and a text field to specify the TimerPeriod. The values for
read-only properties are grayed out.

You open the Property Inspector with the inspect function. Alternatively, you
can open the Property Inspector via the Workspace browser by right-clicking
an instrument object and selecting Call Property Inspector from the
context menu, or by double-clicking the object.

Below is a Property Inspector window for a GPIB interface object.

3-10

Configuring and Returning Properties

3-11

3 Using Interface Objects

Writing and Reading Data
Communicating with your instrument involves writing and reading data.
For example, you might write a text command to a function generator that
queries its peak-to-peak voltage, and then read back the voltage value as a
double-precision array.

Before performing a write or read operation, you should consider these three
questions:

• What is the process by which data flows from MATLAB to the instrument,
and from the instrument to MATLAB?

The Instrument Control Toolbox automatically manages the data
transferred between MATLAB and the instrument. For many common
applications, you can ignore the buffering and data flow process. However,
if you are transferring a large number of values, executing an asynchronous
read or write operation, or debugging your application, you might need to
be aware of how this process works.

• Is the data to be transferred binary (numerical) or text (ASCII)?

For many instruments, writing text data means writing string commands
that change instrument settings, prepare the instrument to return data
or status information, and so on. Writing binary data means writing
numerical values to the instrument such as calibration or waveform data.

• Will the write or read function block access to the MATLAB command line?

You control access to the MATLAB command line by specifying whether
a read or write operation is synchronous or asynchronous. A synchronous
operation blocks access to the command line until the read or write function
completes execution. An asynchronous operation does not block access to
the command, and you can issue additional commands while the read or
write function executes in the background.

Note that there are other issues to consider when reading and writing data
such as the conditions under which a read or write operation completes.
Because these issues vary among the supported interfaces, they are described
in the respective interface-specific chapters.

3-12

Writing and Reading Data

Writing Data
The functions associated with writing data are given below.

Functions Associated with Writing Data

Function Name Description

binblockwrite Write binblock data to the instrument.

fprintf Write text to the instrument.

fwrite Write binary data to the instrument.

stopasync Stop asynchronous read and write operations.

The properties associated with writing data are given below.

Properties Associated with Writing Data

Property Name Description

BytesToOutput Indicate the number of bytes currently in the output
buffer.

OutputBufferSize Specify the size of the output buffer in bytes.

Timeout Specify the waiting time to complete a read or write
operation.

TransferStatus Indicate if an asynchronous read or write operation is
in progress.

ValuesSent Indicate the total number of values written to the
instrument.

The Output Buffer and Data Flow
The output buffer is computer memory allocated by the instrument object
to store data that is to be written to the instrument. The flow of data from
MATLAB to your instrument follows these steps:

1 The data specified by the write function is sent to the output buffer.

2 The data in the output buffer is sent to the instrument.

3-13

3 Using Interface Objects

The OutputBufferSize property specifies the maximum number of bytes that
you can store in the output buffer. The BytesToOutput property indicates the
number of bytes currently in the output buffer. The default values for these
properties are given below.

g = gpib('ni',0,1);
get(g,{'OutputBufferSize','BytesToOutput'})
ans =

[512] [0]

If you attempt to write more data than can fit in the output buffer, an error
is returned and no data is written.

Note When writing data, you might need to specify a value, which can consist
of one or more bytes. This is because some write functions allow you to control
the number of bits written for each value and the interpretation of those bits
as character, integer or floating point values. For example, if you write one
value from an instrument using the int32 format, then that value consists
of four bytes.

For example, suppose you write the string command *IDN? to an instrument
using the fprintf function. As shown below, the string is first written to the
output buffer as six values.

The *IDN? command consists of six values because the End-Of-String
character is written to the instrument, as specified by the EOSMode and

3-14

Writing and Reading Data

EOSCharCode properties. Moreover, the default data format for the fprintf
function specifies that one value corresponds to one byte.

As shown below, after the string is stored in the output buffer, it is then
written to the instrument.

Writing Text Data Versus Writing Binary Data
For many instruments, writing text data means writing string commands that
change instrument settings, prepare the instrument to return data or status
information, and so on. Writing binary data means writing numerical values
to the instrument such as calibration or waveform data.

You can write text data with the fprintf function. By default, fprintf
uses the %s\n format, which formats the data as a string and includes the
terminator. You can write binary data with the fwrite function. By default,
fwrite writes data using the uchar precision, which translates the data
as unsigned 8-bit characters. Both of these functions support many other
formats and precisions, as described in their reference pages.

The following example illustrates writing text data and binary data to a
Tektronix TDS 210 oscilloscope. The text data consists of string commands,
while the binary data is a waveform that is to be downloaded to the scope and
stored in its memory:

1 Create an instrument object — Create the GPIB object g associated
with a National Instruments GPIB controller with board index 0, and
an instrument with primary address 1. The size of the output buffer is
increased to accommodate the waveform data. You must configure the

3-15

3 Using Interface Objects

OutputBufferSize property while the GPIB object is disconnected from
the instrument.

g = gpib('ni',0,1);
g.OutputBufferSize = 3000;

2 Connect to the instrument — Connect g to the instrument.

fopen(g)

3 Write and read data — Write string commands that configure the scope
to store binary waveform data in memory location A.

fprintf(g,'DATA:DESTINATION REFA');
fprintf(g,'DATA:ENCDG SRPbinary');
fprintf(g,'DATA:WIDTH 1');
fprintf(g,'DATA:START 1');

Create the waveform data.

t = linspace(0,25,2500);
data = round(sin(t)*90 + 127);

Write the binary waveform data to the scope.

cmd = double('CURVE #42500');
fwrite(g,[cmd data]);

The ValuesSent property indicates the total number of values that were
written to the instrument.

g.ValuesSent
ans =

2577

4 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, remove it from memory, and remove it
from the MATLAB workspace.

fclose(g)
delete(g)
clear g

3-16

Writing and Reading Data

Synchronous Versus Asynchronous Write Operations
By default, all write functions operate synchronously and block the MATLAB
command line until the operation completes. To perform an asynchronous
write operation, you supply the async input argument to the fprintf or
fwrite function.

For example, you use the following syntax to modify the fprintf commands
used in the preceding example to write text data asynchronously.

fprintf(g,'DATA:DESTINATION REFA','async');

Similarly, you use the following syntax to modify the fwrite command used
in the preceding example to write binary data asynchronously.

fwrite(g,[cmd data],'async');

You can monitor the status of the asynchronous write operation with the
TransferStatus property. A value of idle indicates that no asynchronous
operations are in progress.

g.TransferStatus
ans =
write

You can use the BytesToOutput property to indicate the numbers of bytes
that exist in the output buffer waiting to be written to the instrument.

g.BytesToOutput
ans =

2512

3-17

3 Using Interface Objects

Reading Data
The functions associated with reading data are given below.

Functions Associated with Reading Data

Function Name Description

binblockread Read binblock data from the instrument.

fgetl Read one line of text from the instrument and
discard the terminator.

fgets Read one line of text from the instrument and
include the terminator.

fread Read binary data from the instrument.

fscanf Read data from the instrument, and format as text.

readasync Read data asynchronously from the instrument.

scanstr Read data from the instrument, format as text,
and parse

stopasync Stop asynchronous read and write operations.

The properties associated with reading data are given below.

Properties Associated with Reading Data

Property Name Description

BytesAvailable Indicate the number of bytes available in the input
buffer.

InputBufferSize Specify the size of the input buffer in bytes.

ReadAsyncMode Specify whether an asynchronous read is
continuous or manual (serial port, TCPIP, UDP,
and VISA-serial objects only).

Timeout Specify the waiting time to complete a read or write
operation.

3-18

Writing and Reading Data

Properties Associated with Reading Data (Continued)

Property Name Description

TransferStatus Indicate if an asynchronous read or write operation
is in progress.

ValuesReceived Indicate the total number of values read from the
instrument.

The Input Buffer and Data Flow
The input buffer is computer memory allocated by the instrument object to
store data that is to be read from the instrument. The flow of data from your
instrument to MATLAB follows these steps:

1 The data read from the instrument is stored in the input buffer.

2 The data in the input buffer is returned to the MATLAB variable specified
by the read function.

The InputBufferSize property specifies the maximum number of bytes that
you can store in the input buffer. The BytesAvailable property indicates the
number of bytes currently available to be read from the input buffer. The
default values for these properties are given below.

g = gpib('ni',0,1);
get(g,{'InputBufferSize','BytesAvailable'})
ans =

[512] [0]

If you attempt to read more data than can fit in the input buffer, an error is
returned and no data is read.

For example, suppose you use the fscanf function to read the text-based
response of the *IDN? command previously written to the instrument. As
shown below, the data is first read into the input buffer.

3-19

3 Using Interface Objects

Note that for a given read operation, you might not know the number of
bytes returned by the instrument. Therefore, you might need to preset the
InputBufferSize property to a sufficiently large value before connecting
the instrument object.

As shown below, after the data is stored in the input buffer, it is then
transferred to the output variable specified by fscanf.

Reading Text Data Versus Reading Binary Data
For many instruments, reading text data means reading string data that
reflect instrument settings, status information, and so on. Reading binary
data means reading numerical values from the instrument.

You can read text data with the fgetl, fgets, and fscanf functions. By
default, these functions return data using the %c format. You can read binary
data with the fread function. By default, fread returns numerical values as

3-20

Writing and Reading Data

double-precision arrays. Both the fscanf and fread functions support many
other formats and precisions, as described in their reference pages.

The following example illustrates reading text data and binary data from a
Tektronix TDS 210 oscilloscope, which is displaying a periodic input signal
with a nominal frequency of 1.0 kHz.

1 Create an instrument object — Create the GPIB object g associated
with a National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

2 Connect to the instrument — Connect g to the instrument.

fopen(g)

3 Write and read data — Write the *IDN? command to the scope, and read
back the identification information as text.

fprintf(g,'*IDN?')
idn = fscanf(g)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Configure the scope to return the period of the input signal, and then read
the period as a binary value. The output display format is configured to use
short exponential notation for doubles.

fprintf(g,'MEASUREMENT:MEAS1:TYPE PERIOD')
fprintf(g,'MEASUREMENT:MEAS1:VALUE?')
format short e
period = fread(g,9)'
period =

49 46 48 48 54 69 45 51 10

period consists of positive integers representing character codes, where 10
is a line feed. To convert the voltage value to a string, use the char function.

char(period)
ans =
1.006E-3

3-21

3 Using Interface Objects

The ValuesReceived property indicates the total number of values that
were read from the instrument.

g.ValuesReceived
ans =

65

4 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, remove it from memory, and remove it
from the MATLAB workspace.

fclose(g)
delete(g)
clear g

Synchronous Versus Asynchronous Read Operations
The fgetl, fgets, fscanf, and fread functions operate synchronously and
block the MATLAB command line until the operation completes. To perform
an asynchronous read operation, you use the readasync function. readasync
asynchronously reads data from the instrument and stores it in the input
buffer. To transfer the data from the input buffer to a MATLAB variable, you
use one of the synchronous read functions.

Note For serial port, TCPIP, UDP, and VISA-serial objects, you can also
perform an asynchronous read operation by configuring the ReadAsyncMode
property to continuous.

For example, to modify the preceding example to asynchronously read the
scope’s identification information, you would issue the readasync function
after the *IDN? command is written.

fprintf(g,'*IDN?')
readasync(g)

You can monitor the status of the asynchronous read operation with the
TransferStatus property. A value of idle indicates that no asynchronous
operations are in progress.

3-22

Writing and Reading Data

g.TransferStatus
ans =
read

You can use the BytesAvailable property to indicate the number of bytes
that exist in the input buffer waiting to be transferred to MATLAB.

g.BytesAvailable
ans =

56

When the read completes, you can transfer the data as text to a MATLAB
variable using the fscanf function.

idn = fscanf(g);

3-23

3 Using Interface Objects

Disconnecting and Cleaning Up
When you no longer need an instrument object, you should disconnect it from
the instrument, and clean up the MATLAB environment by removing the
object from memory and from the workspace. These are the steps you take to
end an instrument control session.

Disconnecting an Instrument Object
When you no longer need to communicate with the instrument, you should
disconnect it with the fclose function.

fclose(g)

You can examine the Status property to verify that the object and the
instrument are disconnected.

g.Status
ans =
closed

After fclose is issued, the resources associated with g are made available,
and you can once again connect an instrument object to the instrument with
fopen.

Cleaning Up the MATLAB Environment
When you no longer need the instrument object, you should remove it from
memory with the delete function.

delete(g)

A deleted instrument object is invalid, which means that you cannot connect
it to the instrument. In this case, you should remove the object from the
MATLAB workspace. To remove instrument objects and other variables from
the MATLAB workspace, use the clear command.

clear g

If you use clear on an object that is connected to an instrument, the object
is removed from the workspace but remains connected to the instrument.

3-24

Disconnecting and Cleaning Up

You can restore cleared instrument objects to MATLAB with the instrfind
function.

3-25

3 Using Interface Objects

3-26

4

Controlling Instruments
Using the GPIB

This chapter describes specific issues related to controlling instruments that
use the GPIB interface. The sections are as follows.

GPIB Overview (p. 4-3) Basic features of the General
Purpose Interface Bus (GPIB).

Creating a GPIB Object (p. 4-15) The GPIB object establishes a
connection between MATLAB
and the instrument via its GPIB
interface.

Configuring the GPIB Address
(p. 4-18)

The GPIB address consists of the
board index of the GPIB controller,
and the primary address and
(optionally) the secondary address of
the instrument.

Writing and Reading Data (p. 4-19) Interface-specific issues related to
writing and reading data with a
GPIB object.

Events and Callbacks (p. 4-29) Enhance your instrument control
application using events and
callbacks.

4 Controlling Instruments Using the GPIB

Triggers (p. 4-37) Send the GET (Group Execute
Trigger) GPIB command to the
instrument. This command instructs
all addressed Listeners to perform
a specified action.

Serial Polls (p. 4-39) Execute a serial poll where
the Controller asks (polls) each
addressed Listener to send back a
status byte that indicates whether it
has asserted the SRQ line and needs
servicing.

4-2

GPIB Overview

GPIB Overview
This section provides an overview of the General Purpose Interface Bus
(GPIB). Topics include

• “What Is GPIB?” on page 4-3

• “Important GPIB Features” on page 4-4

• “GPIB Lines” on page 4-5

• “Status and Event Reporting” on page 4-10

For many GPIB applications, you can communicate with your instrument
without detailed knowledge of how GPIB works. Communication is
established through a GPIB object, which you create in the MATLAB
workspace.

If your application is straightforward, or if you are already familiar with
the topics mentioned above, you might want to begin with “Creating a GPIB
Object” on page 4-15. If you want a high-level description of all the steps
you are likely to take when communicating with your instrument, refer to
Chapter 2, “The Instrument Control Session”.

What Is GPIB?
The GPIB is a standardized interface that allows you to connect and control
multiple devices from various vendors. GPIB is also referred to by its original
name HP-IB, or by its IEEE designation IEEE-488. The GPIB functionality
has evolved over time, and is described in several specifications:

• The IEEE 488.1-1975 specification defines the electrical and mechanical
characteristics of the interface and its basic functional characteristics.

• The IEEE-488.2-1987 specification builds on the IEEE 488.1 specification to
define an acceptable minimum configuration and a basic set of instrument
commands and common data formats.

• The Standard Commands for Programmable Instrumentation (SCPI)
specification builds on the commands given by the IEEE 488.2 specification
to define a standard instrument command set that can be used by GPIB or
other interfaces.

4-3

4 Controlling Instruments Using the GPIB

Some of the GPIB functionality is required for all GPIB devices, while
other GPIB functionality is optional. Additionally, many devices support
only a subset of the SCPI command set, or use a different vendor-specific
command set. Refer to your device documentation for a complete list of its
GPIB capabilities and its command set.

Important GPIB Features
The important GPIB features are described below. For detailed information
about GPIB functionality, see the appropriate references in Appendix B,
“Bibliography”.

Bus and Connector
The GPIB bus is a cable with two 24-pin connectors that allow you to connect
multiple devices to each other. The bus and connector have these features
and limitations:

• You can connect up to fifteen devices to a bus.

• You can connect devices in a star configuration, a linear configuration,
or a combination of configurations.

• To achieve maximum data transfer rates, the cable length should not
exceed 20 meters total or an average of 2 meters per device. You can
eliminate these restrictions by using a bus extender.

GPIB Devices
Each GPIB device must be some combination of a Talker, a Listener, or a
Controller. A Controller is typically a board that you install in your computer.
Talkers and Listeners are typically instruments such as oscilloscopes,
function generators, multimeters, and so on. Most modern instruments are
both Talkers and Listeners.

• Talkers — A Talker transmits data over the interface when addressed to
talk by the Controller. There can be only one Talker at a given time.

• Listeners — A Listener receives data over the interface when addressed to
listen by the Controller. There can be up to 14 Listeners at a given time.
Typically, the Controller is a Talker while one or more instruments on the
GPIB are Listeners.

4-4

GPIB Overview

• Controllers — The Controller specifies which devices are Talkers or
Listeners. A GPIB system can contain multiple Controllers — one of
which is designated the System Controller. However, only one Controller
can be active at a given time. The current active controller is the
Controller-In-Charge (CIC). The CIC can pass control to an idle Controller,
but only the System Controller can make itself the CIC.

When the Controller is not sending messages, then a Talker can send
messages. Typically, the CIC is a Listener while another device is enabled
as a Talker.

Each Controller is identified by a unique board index number. Each
Talker/Listener is identified by a unique primary address ranging from 0
to 30, and by an optional secondary address, which can be 0 or can range
from 96 to 126.

GPIB Data
There are two types of data that can be transferred over the GPIB: instrument
data and interface messages:

• Instrument data — Instrument data consists of vendor-specific commands
that configure your instrument, return measurement results, and so on.
For a complete list of commands supported by your instrument, refer to its
documentation.

• Interface messages — Interface messages are defined by the GPIB standard
and consist of commands that clear the GPIB bus, address devices, return
self-test results, and so on.

Data transfer consists of one byte (8 bits) sent in parallel. The data transfer
rate across the interface is limited to 1 megabyte per second. However, this
data rate is usually not achieved in practice, and is limited by the slowest
device on the bus.

GPIB Lines
The GPIB consists of 24 lines, which are shared by all instruments connected
to the bus. 16 lines are used for signals, while 8 lines are for ground. The
signal lines are divided into these groups:

4-5

4 Controlling Instruments Using the GPIB

• Eight data lines

• Five interface management lines

• Three handshake lines

The signal lines use a low-true (negative) logic convention with TTL levels.
This means that a line is low (true or asserted) when it is a TTL low level,
and a line is high (false or unasserted) when it is a TTL high level. The pin
assignment scheme for a GPIB connector is shown below.

The pins and signals associated with the GPIB connector are described below.

GPIB Pin and Signal Assignments

Pin Label Signal Name Pin Label Signal Name

1 DIO1 Data transfer 13 DIO5 Data transfer

2 DIO2 Data transfer 14 DIO6 Data transfer

3 DIO3 Data transfer 15 DIO7 Data transfer

4 DIO4 Data transfer 16 DIO8 Data transfer

5 EOI End Or Identify 17 REN Remote Enable

6 DAV Data Valid 18 GND DAV ground

7 NRFD Not Ready For Data 19 GND NRFD ground

8 NDAC Not Data Accepted 20 GND NDAC ground

9 IFC Interface Clear 21 GND IFC ground

10 SRQ Service Request 22 GND SRQ ground

4-6

GPIB Overview

GPIB Pin and Signal Assignments (Continued)

Pin Label Signal Name Pin Label Signal Name

11 ATN Attention 23 GND ATN ground

12 Shield Chassis ground 24 GND Signal ground

Data Lines
The eight data lines, DIO1 through DIO8, are used for transferring data
one byte at a time. DIO1 is the least significant bit, while DIO8 is the most
significant bit. The transferred data can be an instrument command or a
GPIB interface command.

Data formats are vendor-specific and can be text-based (ASCII) or binary.
GPIB interface commands are defined by the IEEE 488 standard.

Interface Management Lines
The interface management lines control the flow of data across the GPIB
interface, and are described below.

GPIB Interface Management Lines

Line Description

ATN Used by the Controller to inform all devices on the GPIB that
bytes are being sent. If the ATN line is high, the bytes are
interpreted as an instrument command. If the ATN line is low,
the bytes are interpreted as an interface message.

IFC Used by the Controller to initialize the bus. If the IFC line is
low, the Talker and Listeners are unaddressed, and the System
Controller becomes the Controller-In-Charge.

REN Used by the Controller to place instruments in remote or local
program mode. If REN is low, all Listeners are placed in remote
mode, and you cannot change their settings from the front panel.
If REN is high, all Listeners are placed in local mode.

4-7

4 Controlling Instruments Using the GPIB

GPIB Interface Management Lines (Continued)

Line Description

SRQ Used by Talkers to asynchronously request service from the
Controller. If SRQ is low, then one or more Talkers require
service (for example, an error such as invalid command was
received). You issue a serial poll to determine which Talker
requested service. The poll automatically sets the SRQ line high.

EOI If the ATN line is high, the EOI line is used by Talkers to identify
the end of a byte stream such as an instrument command. If the
ATN line is low, the EOI line is used by the Controller to perform
a parallel poll (not supported by the toolbox).

You can examine the state of the interface management lines with the
BusManagementStatus property.

Handshake Lines
The three handshake lines, DAV, NRFD, and NDAC, are used to transfer
bytes over the data lines from the Talker to one or more addressed Listeners.

Before data is transferred, all three lines must be in the proper state. The
active Talker controls the DAV line and the Listener(s) control the NRFD and
NDAC lines. The handshake process allows for error-free data transmission.
The handshake lines are described below.

GPIB Handshake Lines

Line Description

DAV Used by the Talker to indicate that a byte can be read by the
Listeners.

NRFD Indicates whether the Listener is ready to receive the byte.

NDAC Indicates whether the Listener has accepted the byte.

The handshaking process follows these steps:

4-8

GPIB Overview

1 Initially, the Talker holds the DAV line high indicating no data is available,
while the Listeners hold the NRFD line high and the NDAC line low
indicating they are ready for data and no data is accepted, respectively.

2 When the Talker puts data on the bus, it sets the DAV line low, which
indicates that the data is valid.

3 The Listeners set the NRFD line low, which indicates that they are not
ready to accept new data.

4 The Listeners set the NDAC line high, which indicates that the data is
accepted.

5 When all Listeners indicate that they have accepted the data, the Talker
asserts the DAV line indicating that the data is no longer valid. The next
byte of data can now be transmitted.

6 The Listeners hold the NRFD line high indicating they are ready to receive
data again, and the NDAC line is held low indicating no data is accepted.

Note If the ATN line is high during the handshaking process, the information
is considered data such as an instrument command. If the ATN line is low,
the information is considered a GPIB interface message.

The handshaking steps are shown below.

4-9

4 Controlling Instruments Using the GPIB

You can examine the state of the handshake lines with the HandshakeStatus
property.

Status and Event Reporting
GPIB provides a system for reporting status and event information. With
this system, you can find out if your instrument has data to return, whether
a command error occurred, and so on. For many instruments, the reporting
system consists of four 8-bit registers and two queues (output and event). The
four registers are grouped into these two functional categories:

• Status Registers — The Status Byte Register (SBR) and Standard Event
Status Register (SESR) contain information about the state of the
instrument.

• Enable Registers — The Event Status Enable Register (ESER) and the
Service Request Enable Register (SRER) determine which types of events

4-10

GPIB Overview

are reported to the status registers and the event queue. ESER enables
SESR, while SRER enables SBR.

The status registers, enable registers, and output queue are shown below.

4-11

4 Controlling Instruments Using the GPIB

Status Byte Register
Each bit in the Status Byte Register (SBR) is associated with a specific type of
event. When an event occurs, the instrument sets the appropriate bit to 1.
You can enable or disable the SBR bits with the Service Request Enable
Register (SRER). You can determine which events occurred by reading the
enabled SBR bits. The SBR bits are described below.

Status Byte Register Bits

Bit Label Description

0-3 – Instrument-specific summary messages.

4 MAV The Message Available bit indicates if data is available in
the Output Queue. MAV is 1 if the Output Queue contains
data. MAV is 0 if the Output Queue is empty.

5 ESB The Event Status bit indicates if one or more enabled
events have occurred. ESB is 1 if an enabled event occurs.
ESB is 0 if no enabled events occur. You enable events
with the Standard Event Status Enable Register.

MSS The Master Summary Status summarizes the ESB and
MAV bits. MSS is 1 if either MAV or ESB is 1. MSS is
0 if both MAV and ESB are 0. This bit is obtained from
the *STB? command.

6

RQS The Request Service bit indicates that the instrument
requests service from the GPIB controller. This bit is
obtained from a serial poll.

7 – Instrument-specific summary message.

For example, if you want to know when a specific type of instrument error
occurs, you would enable bit 5 of the SRER. Additionally, you would enable the
appropriate bit of the Standard Event Status Enable Register (see “Standard
Event Status Register” on page 4-13) so that the error event of interest is
reported by the ESB bit of the SBR.

4-12

GPIB Overview

Standard Event Status Register
Each bit in the Standard Event Status Register (SESR) is associated with a
specific state of the instrument. When the state changes, the instrument
sets the appropriate bits to 1. You can enable or disable the SESR bits with
the Standard Event Status Enable Register (ESER). You can determine the
state of the instrument by reading the enabled SESR bits. The SESR bits
are described below.

Standard Event Status Register Bits

Bit Label Description

0 OPC The Operation Complete bit indicates that all commands
have completed.

1 RQC The Request Control bit is not used by most instruments.

2 QYE The Query Error bit indicates that the instrument
attempted to read an empty output buffer, or that data
in the output buffer was lost.

3 DDE The Device Dependent Error bit indicates that a device
error occurred (such as a self-test error).

4 EXE The Execution Error bit indicates that an error occurred
when the device was executing a command or query.

5 CME The Command Error bit indicates that a command
syntax error occurred.

6 URQ The User Request bit is not used by most instruments.

7 PON The Power On bit indicates that the device is powered on.

For example, if you want to know when an execution error occurs, you would
enable bit 4 of the ESER. Additionally, you would enable bit 5 of the SRER
(see “Status Byte Register” on page 4-12) so that the error event of interest is
reported by the ESB bit of the SBR.

4-13

4 Controlling Instruments Using the GPIB

Reading and Writing Register Information
This section describes the common GPIB commands used to read and write
status and event register information.

GPIB Commands for Reading and Writing Register Information

Register Operation Command Description

Read *ESR? Return a decimal value that corresponds to the
weighted sum of all the bits set in the SESR
register.

SESR

Write N/A You cannot write to the SESR register.

Read *ESE? Return a decimal value that corresponds to the
weighted sum of all the bits enabled by the *ESE
command.

ESER

Write *ESE Write a decimal value that corresponds to the
weighted sum of all the bits you want to enable in
the SESR register.

Read *STB? Return a decimal value that corresponds to the
weighted sum of all the bits set in the SBR register.
This command returns the same result as a serial
poll except that the MSS bit is not cleared.

SBR

Write N/A You cannot write to the SBR register.

Read *SRE? Return a decimal value that corresponds to the
weighted sum of all the bits enabled by the *SRE
command.

SRER

Write *SRE Write a decimal value that corresponds to the
weighted sum of all the bits you want to enable in
the SBR register.

For example, to enable bit 4 of the SESR, you write the command *ESE 16.
To enable bit 4 and bit 5 of the SESR, you write the command *ESE 48. To
enable bit 5 of the SBR, you write the command *SRE 32.

To see how to use many of these commands in the context of an instrument
control session, refer to “Example: Executing a Serial Poll” on page 4-39.

4-14

Creating a GPIB Object

Creating a GPIB Object
You create a GPIB object with the gpib function. gpib requires the adaptor
name, the GPIB board index, and the primary address of the instrument.
As described in “Connecting to the Instrument” on page 2-5, you can also
configure property values during object creation. For a list of supported
adaptors, refer to “The Interface Driver Adaptor” on page 1-7.

Each GPIB object is associated with one controller and one instrument. For
example, to create a GPIB object associated with a National Instruments
controller with board index 0, and an instrument with primary address 1,

g = gpib('ni',0,1);

Note You do not use the GPIB board primary address in the GPIB object
constructor syntax. You use the board index, and the instrument address.

The GPIB object g now exists in the MATLAB workspace. You can display the
class of g with the whos command.

whos g
Name Size Bytes Class

g 1x1 636 gpib object

Grand total is 14 elements using 636 bytes

Once the GPIB object is created, the properties listed below are automatically
assigned values. These general purpose properties provide descriptive
information about the object based on its class type and address information.

4-15

4 Controlling Instruments Using the GPIB

GPIB Descriptive Properties

Property
Name Description

Name Specify a descriptive name for the GPIB object.

Type Indicate the object type.

You can display the values of these properties for g with the get function.

get(g,{'Name','Type'})
ans =

'GPIB0-1' 'gpib'

The GPIB Object Display
The GPIB object provides you with a convenient display that summarizes
important address and state information. You can invoke the display
summary these ways:

• Type the GPIB object at the command line.

• Exclude the semicolon when creating a GPIB object.

• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by
right-clicking an instrument object and selecting Display Summary from
the context menu.

The display summary for the GPIB object g is given below.

GPIB Object Using NI Adaptor : GPIB0-1

Communication Address
BoardIndex: 0
PrimaryAddress: 1
SecondaryAddress: 0

Communication State
Status: closed
RecordStatus: off

4-16

Creating a GPIB Object

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

4-17

4 Controlling Instruments Using the GPIB

Configuring the GPIB Address
Each GPIB object is associated with one controller and one instrument. The
GPIB address consists of the board index of the GPIB controller, and the
primary address and (optionally) the secondary address of the instrument.
The term “board index” is equivalent to the term “logical unit” as used by
Agilent Technologies.

Note that some vendors place limits on the allowed board index values. Refer
to Appendix A, “Vendor Driver Requirements and Limitations” for a list of
these limitations. You can usually find the instrument addresses through
a front panel display or by examining dip switch settings. Valid primary
addresses range from 0 to 30. Valid secondary addresses range from 96 to 126,
or can be 0, indicating that no secondary address is used.

The properties associated with the GPIB address are given below.

GPIB Address Properties

Property Name Description

BoardIndex Specify the index number of the GPIB board.

PrimaryAddress Specify the primary address of the GPIB instrument.

SecondaryAddress Specify the secondary address of the GPIB instrument.

You must specify the board index and instrument primary address values
during GPIB object creation. The BoardIndex and PrimaryAddress properties
are automatically updated with these values. If the instrument has a
secondary address, you can specify its value during or after object creation by
configuring the SecondaryAddress property.

You can display the address property values for the GPIB object g created in
“Creating a GPIB Object” on page 4-15 with the get function.

get(g,{'BoardIndex','PrimaryAddress','SecondaryAddress'})
ans =

[0] [1] [0]

4-18

Writing and Reading Data

Writing and Reading Data
This section describes interface-specific issues related to writing and reading
data with a GPIB object. Topics include

• “Rules for Completing Write and Read Operations” on page 4-19

• “Example: Writing and Reading Text Data” on page 4-20

• “Example: Reading Binary Data” on page 4-22

• “Example: Parsing Input Data Using scanstr” on page 4-25

• “Example: Understanding EOI and EOS” on page 4-26

For a general overview about writing and reading data, as well as a list of
all associated functions and properties, refer to “Communicating with Your
Instrument” on page 2-8.

Rules for Completing Write and Read Operations
The rules for completing synchronous and asynchronous read and write
operations are described below.

Completing Write Operations
A write operation using fprintf or fwrite completes when one of these
conditions is satisfied:

• The specified data is written.

• The time specified by the Timeout property passes.

Additionally, you can stop an asynchronous write operation at any time with
the stopasync function.

An instrument determines if a write operation is complete based on the
EOSMode, EOIMode, and EOSCharCode property values. If EOSMode is
configured to either write or read&write, each occurrence of \n in a text
command is replaced with the End-Of-String (EOS) character specified by the
EOSCharCode value. Therefore, when you use the default fprintf format of
%s\n, all text commands written to the instrument will end with that value.

4-19

4 Controlling Instruments Using the GPIB

The default EOSCharCode value is LF, which corresponds to the line feed
character. The EOS character required by your instrument will be described
in its documentation.

If EOIMode is on, then the End Or Identify (EOI) line is asserted when the last
byte is written to the instrument. The last byte can be part of a binary data
stream or a text data stream. If EOSMode is configured to either write or
read&write, then the last byte written is the EOSCharCode value and the EOI
line is asserted when the instrument receives this byte.

Completing Read Operations
A read operation with fgetl, fgets, fread, fscanf, or readasync completes
when one of these conditions is satisfied:

• The EOI line is asserted.

• The terminator specified by the EOSCharCode property is read. This can
occur only when the EOSMode property is configured to either read or
read&write.

• The time specified by the Timeout property passes.

• The specified number of values is read (fread, fscanf, and readasync
only).

• The input buffer is filled (if the number of values is not specified).

In addition to these rules, you can stop an asynchronous read operation at
any time with the stopasync function.

Example: Writing and Reading Text Data
This example illustrates how to communicate with a GPIB instrument by
writing and reading text data.

The instrument is a Tektronix TDS 210 two-channel oscilloscope. Therefore,
many of the commands used are specific to this instrument. A sine wave
is input into channel 2 of the oscilloscope, and your job is to measure the
peak-to-peak voltage of the input signal:

4-20

Writing and Reading Data

1 Create an instrument object — Create the GPIB object g associated
with a National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

2 Connect to the instrument — Connect g to the oscilloscope, and return
the default values for the EOSMode and EOIMode properties.

fopen(g)
get(g,{'EOSMode','EOIMode'})
ans =

'none' 'on'

Using these property values, write operations complete when the last byte
is written to the instrument, and read operations complete when the EOI
line is asserted by the instrument.

3 Write and read data — Write the *IDN? command to the instrument
using fprintf, and then read back the result of the command using fscanf.

fprintf(g,'*IDN?')
idn = fscanf(g)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Determine the measurement source. Possible measurement sources include
channel 1 and channel 2 of the oscilloscope.

fprintf(g,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(g)
source =
CH1

4-21

4 Controlling Instruments Using the GPIB

The scope is configured to return a measurement from channel 1. Because
the input signal is connected to channel 2, you must configure the
instrument to return a measurement from this channel.

fprintf(g,'MEASUREMENT:IMMED:SOURCE CH2')
fprintf(g,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(g)
source =
CH2

You can now configure the scope to return the peak-to-peak voltage,
request the value of this measurement, and then return the voltage value
to MATLAB using fscanf.

fprintf(g,'MEASUREMENT:MEAS1:TYPE PK2PK')
fprintf(g,'MEASUREMENT:MEAS1:VALUE?')
ptop = fscanf(g)
ptop =
2.0199999809E0

4 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(g)
delete(g)
clear g

Example: Reading Binary Data
This example illustrates how you can download the TDS 210 oscilloscope
screen display to MATLAB. The screen display data is transferred to MATLAB
and saved to disk using the Windows bitmap format. This data provides a
permanent record of your work, and is an easy way to document important
signal and scope parameters:

1 Create an instrument object — Create the GPIB object g associated
with a National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

4-22

Writing and Reading Data

2 Configure property values — Configure the input buffer to accept a
reasonably large number of bytes, and configure the timeout value to two
minutes to account for slow data transfer.

g.InputBufferSize = 50000;
g.Timeout = 120;

3 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)

4 Write and read data — Configure the scope to transfer the screen display
as a bitmap.

fprintf(g,'HARDCOPY:PORT GPIB')
fprintf(g,'HARDCOPY:FORMAT BMP')
fprintf(g,'HARDCOPY START')

Asynchronously transfer the data from the instrument to the input buffer.

readasync(g)

Wait until the read operation completes, and then transfer the data to the
MATLAB workspace as unsigned 8-bit integers.

g.TransferStatus
ans =
idle
out = fread(g,g.BytesAvailable,'uint8');

5 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(g)
delete(g)
clear g

Viewing the Bitmap Data
To view the bitmap data, you should follow these steps:

1 Open a disk file.

4-23

4 Controlling Instruments Using the GPIB

2 Write the data to the disk file.

3 Close the disk file.

4 Read the data using the imread function.

5 Scale and display the data using the imagesc function.

Note that the MATLAB file I/O versions of the fopen, fwrite, and fclose
functions are used.

fid = fopen('test1.bmp','w');
fwrite(fid,out,'uint8');
fclose(fid)
a = imread('test1.bmp','bmp');
imagesc(fliplr(a'))

Because the scope returns the screen display data using only two colors, an
appropriate colormap is selected.

mymap = [0 0 0; 1 1 1];
colormap(mymap)

The resulting bitmap image is shown below.

4-24

Writing and Reading Data

Example: Parsing Input Data Using scanstr
This example illustrates how to use the scanstr function to parse data that
you read from a Tektronix TDS 210 oscilloscope. scanstr is particularly
useful when you want to parse a string into one or more cell array elements,
where each element is determined to be either a double or a string:

1 Create an instrument object — Create the GPIB object g associated
with a National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

2 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)

3 Write and read data — Return identification information to separate
elements of a cell array using the default delimiters.

fprintf(g,'*IDN?');
idn = scanstr(g)

4-25

4 Controlling Instruments Using the GPIB

idn =
'TEKTRONIX'
'TDS 210'
[0]
'CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04'

4 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(g)
delete(g)
clear g

Example: Understanding EOI and EOS
This example illustrates how the EOI line and the EOS character are used
to complete read and write operations, and how the EOIMode, EOSMode, and
EOSCharCode properties are related to each other. In most cases, you can
successfully communicate with your instrument by accepting the default
values for these properties.

The default value for EOIMode is on, which means that the EOI line is
asserted when the last byte is written to the instrument. The default value for
EOSMode is none, which means that the EOSCharCode value is not written to
the instrument, and read operations will not complete when the EOSCharCode
value is read. Therefore, when you use the default values for EOIMode and
EOSMode,

• Write operations complete when the last byte is written to the instrument.

• Read operations complete when the EOI line is asserted by the instrument.

1 Create an instrument object — Create the GPIB object g associated
with a National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

2 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)

4-26

Writing and Reading Data

3 Write and read data — Configure g so that the EOI line is not asserted
after the last byte is written to the instrument, and the EOS character is
used to complete write operations. The default format for fprintf is %s\n,
where \n is replaced by the EOS character as given by EOSCharCode.

g.EOIMode = 'off';
g.EOSMode = 'write';
fprintf(g,'*IDN?')
out = fscanf(g)
out =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Although EOSMode is configured so that read operations will not complete
after receiving the EOS character, the preceding read operation succeeded
because the EOI line was asserted.

Now configure g so that the EOS character is not used to complete read
or write operations. Because the EOI line is not asserted and the EOS
character is not written, the instrument cannot interpret the *IDN?
command and a timeout occurs.

g.EOSMode = 'none';
fprintf(g,'*IDN?')
out = fscanf(g)

Warning: GPIB: NI: An I/O operation has been canceled mostly
likely due to a timeout.

Now configure g so that the read operation terminates after the “X”
character is read. The EOIMode property is configured to on so that the
EOI line is asserted after the last byte is written. The EOSMode property
is configured to read so that the read operation completes when the
EOSCharCode value is read.

4-27

4 Controlling Instruments Using the GPIB

g.EOIMode = 'on';
g.EOSMode = 'read';
g.EOSCharCode = 'X';
fprintf(g,'*IDN?')
out = fscanf(g)
out =

TEKTRONIX

Note that the rest of the identification string remains in the instrument’s
hardware buffer. If you do not want to return this data during the next
read operation, you should clear it from the instrument buffer with the
clrdevice function.

clrdevice(g)

4 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(g)
delete(g)
clear g

4-28

Events and Callbacks

Events and Callbacks
You can enhance the power and flexibility of your instrument control
application by using events. An event occurs after a condition is met, and
might result in one or more callbacks.

While the instrument object is connected to the instrument, you can use
events to display a message, display data, analyze data, and so on. Callbacks
are controlled through callback properties and callback functions. All event
types have an associated callback property. Callback functions are M-file
functions that you construct to suit your specific application needs.

You execute a callback when a particular event occurs by specifying the name
of the M-file callback function as the value for the associated callback property.

Example: Introduction to Events and Callbacks
This example uses the M-file callback function instrcallback to display a
message to the command line when a bytes-available event occurs. The event
is generated when the EOSCharCode property value is read.

g = gpib('ni',0,1);
g.BytesAvailableFcnMode = 'eosCharCode';
g.BytesAvailableFcn = @instrcallback;
fopen(g)
fprintf(g,'*IDN?')
readasync(g)

The resulting display from instrcallback is shown below.

BytesAvailable event occurred at 17:30:11 for the object: GPIB0-1.

End the GPIB session.

fclose(g)
delete(g)
clear g

You can use the type command to display instrcallback at the command
line.

4-29

4 Controlling Instruments Using the GPIB

Event Types and Callback Properties
The GPIB event types and associated callback properties are described below.

GPIB Event Types and Callback Properties

Event Type Associated Property Name

BytesAvailableFcn

BytesAvailableFcnCount

Bytes-available

BytesAvailableFcnMode

Error ErrorFcn

Output-empty OutputEmptyFcn

TimerFcnTimer

TimerPeriod

Bytes-Available Event
A bytes-available event is generated immediately after a predetermined
number of bytes are available in the input buffer or the End-Of-String
character is read, as determined by the BytesAvailableFcnMode property.

If BytesAvailableFcnMode is byte, the bytes-available event executes the
callback function specified for the BytesAvailableFcn property every time
the number of bytes specified by BytesAvailableFcnCount is stored in the
input buffer. If BytesAvailableFcnMode is eosCharCode, then the callback
function executes every time the character specified by the EOSCharCode
property is read.

This event can be generated only during an asynchronous read operation.

Error Event
An error event is generated immediately after an error, such as a timeout,
occurs. A timeout occurs if a read or write operation does not successfully
complete within the time specified by the Timeout property. An error event
is not generated for configuration errors such as setting an invalid property
value.

4-30

Events and Callbacks

This event executes the callback function specified for the ErrorFcn property.
It can be generated only during an asynchronous read or write operation.

Output-Empty Event
An output-empty event is generated immediately after the output buffer is
empty.

This event executes the callback function specified for the OutputEmptyFcn
property. It can be generated only during an asynchronous write operation.

Timer Event
A timer event is generated when the time specified by the TimerPeriod
property passes. Time is measured relative to when the object is connected to
the instrument.

This event executes the callback function specified for the TimerFcn property.
Note that some timer events might not be processed if your system is
significantly slowed or if the TimerPeriod value is too small.

Storing Event Information
You can store event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The
Type field contains the event type, while the Data field contains event-specific
information. As described in “Creating and Executing Callback Functions” on
page 4-32, these two fields are associated with a structure that you define in
the callback function header. Refer to “Debugging: Recording Information to
Disk” on page 12-6 to learn about storing event information in a record file.

The event types and the values for the Type and Data fields are given below.

4-31

4 Controlling Instruments Using the GPIB

GPIB Event Information

Event Type Field Field Value

Type BytesAvailableBytes available

Data.AbsTime day-month-year
hour:minute:second

Type Error

Data.AbsTime day-month-year
hour:minute:second

Error

Data.Message An error string

Type OutputEmptyOutput empty

Data.AbsTime day-month-year
hour:minute:second

Type TimerTimer

Data.AbsTime day-month-year
hour:minute:second

The Data field values are described below.

The AbsTime Field
AbsTime is defined for all events, and indicates the absolute time the event
occurred. The absolute time is returned using the MATLAB clock format:

day-month-year hour:minute:second

The Message Field
Message is used by the error event to store the descriptive message that is
generated when an error occurs.

Creating and Executing Callback Functions
You specify the callback function to be executed when a specific event type
occurs by including the name of the M-file as the value for the associated
callback property. You can specify the callback function as a function handle

4-32

Events and Callbacks

or as a string cell array element. Function handles are described in the
MATLAB function_handle reference page. Note that if you are executing
a local callback function from within an M-file, then you must specify the
callback as a function handle.

For example, to execute the callback function mycallback every time the
EOSCharCode property value is read from your instrument,

g.BytesAvailableFcnMode = 'eosCharCode';
g.BytesAvailableFcn = @mycallback;

Alternatively, you can specify the callback function as a cell array.

g.BytesAvailableFcn = {'mycallback'};

M-file callback functions require at least two input arguments. The first
argument is the instrument object. The second argument is a variable that
captures the event information given in the preceding table, GPIB Event
Information on page 4-32. This event information pertains only to the
event that caused the callback function to execute. The function header for
mycallback is shown below.

function mycallback(obj,event)

You pass additional parameters to the callback function by including both the
callback function and the parameters as elements of a cell array. For example,
to pass the MATLAB variable time to mycallback,

time = datestr(now,0);
g.BytesAvailableFcnMode = 'eosCharCode';
g.BytesAvailableFcn = {@mycallback,time};

Alternatively, you can specify mycallback as a string in the cell array.

g.BytesAvailableFcn = {'mycallback',time};

The corresponding function header is

function mycallback(obj,event,time)

If you pass additional parameters to the callback function, then they must be
included in the function header after the two required arguments.

4-33

4 Controlling Instruments Using the GPIB

Note You can also specify the callback function as a string. In this case, the
callback is evaluated in the MATLAB workspace and no requirements are
made on the input arguments of the callback function.

Enabling Callback Functions After They Error
If an error occurs while a callback function is executing, then

• The callback function is automatically disabled.

• A warning is displayed at the command line, indicating that the callback
function is disabled.

If you want to enable the same callback function, you can set the callback
property to the same value or you can disconnect the object with the fclose
function. If you want to use a different callback function, the callback will be
enabled when you configure the callback property to the new value.

Example: Using Events and Callbacks to Read Binary
Data
This example extends “Example: Reading Binary Data” on page 4-22 by
using the M-file callback function instrcallback to display event-related
information to the command line when a bytes-available event occurs during
a binary read operation:

1 Create an instrument object — Create the GPIB object g associated
with a National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

2 Configure properties — Configure the input buffer to accept a reasonably
large number of bytes, and configure the timeout value to two minutes
to account for slow data transfer.

g.InputBufferSize = 50000;
g.Timeout = 120;

4-34

Events and Callbacks

Configure g to execute the callback function instrcallback every
time 5000 bytes is stored in the input buffer. Because instrcallback
requires an instrument object and event information to be passed as input
arguments, the callback function is specified as a function handle.

g.BytesAvailableFcnMode = 'byte';
g.BytesAvailableFcnCount = 5000;
g.BytesAvailableFcn = @instrcallback;

3 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)

4 Write and read data — Configure the scope to transfer the screen display
as a bitmap.

fprintf(g,'HARDCOPY:PORT GPIB')
fprintf(g,'HARDCOPY:FORMAT BMP')
fprintf(g,'HARDCOPY START')

Initiate the asynchronous read operation, and begin generating events.

readasync(g)

instrcallback is called every time 5000 bytes is stored in the input buffer.
The resulting displays are shown below.

BytesAvailable event occurred at 09:41:42 for the object: GPIB0-1.
BytesAvailable event occurred at 09:41:50 for the object: GPIB0-1.
BytesAvailable event occurred at 09:41:58 for the object: GPIB0-1.
BytesAvailable event occurred at 09:42:06 for the object: GPIB0-1.
BytesAvailable event occurred at 09:42:14 for the object: GPIB0-1.
BytesAvailable event occurred at 09:42:22 for the object: GPIB0-1.
BytesAvailable event occurred at 09:42:30 for the object: GPIB0-1.

Wait until all the data is sent to the input buffer, and then transfer the data
to MATLAB as unsigned 8-bit integers.

g.TransferStatus
ans =
idle
out = fread(g,g.BytesAvailable,'uint8');

4-35

4 Controlling Instruments Using the GPIB

5 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(g)
delete(g)
clear g

4-36

Triggers

Triggers
You can execute a trigger with the trigger function. This function is
equivalent to writing the GET (Group Execute Trigger) GPIB command to
the instrument.

trigger instructs all the addressed Listeners to perform some
instrument-specific function such as taking a measurement. Refer to your
instrument documentation to learn how to use its triggering capabilities.

Example: Executing a Trigger
This example illustrates GPIB triggering using an Agilent 33120A function
generator. The output of the function generator is displayed with an
oscilloscope so that the trigger can be observed:

1 Create an instrument object — Create the GPIB object g associated
with a National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

2 Connect to the instrument — Connect g to the function generator.

fopen(g)

3 Write and read data — Configure the function generator to produce a
5000 Hz sine wave, with 6 volts peak-to-peak.

fprintf(g,'Func:Shape Sin')
fprintf(g,'Volt 3')
fprintf(g,'Freq 5000')

Configure the burst of the trigger to display the sine wave for five seconds,
configure the function generator to expect the trigger from the GPIB board,
and enable the burst mode.

fprintf(g,'BM:NCycles 25000')
fprintf(g,'Trigger:Source Bus')
fprintf(g,'BM:State On')

4-37

4 Controlling Instruments Using the GPIB

Trigger the instrument.

trigger(g)

Disable the burst mode.

fprintf(g,'BM:State Off')

While the function generator is triggered, the sine wave is saved to the Ref
A memory location of the oscilloscope. The saved waveform is shown below.

4 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(g)
delete(g)
clear g

4-38

Serial Polls

Serial Polls
You can execute a serial poll with the spoll function. In a serial poll, the
Controller asks (polls) each addressed Listener to send back a status byte that
indicates whether it has asserted the SRQ line and needs servicing. The
seventh bit of this byte (the RQS bit) is set if the instrument is requesting
service.

The Controller performs the following steps for every addressed Listener:

1 The Listener is addressed to talk and the Serial Poll Enable (SPE)
command byte is sent.

2 The ATN line is set high and the Listener returns the status byte.

3 The ATN line is set low and the Serial Poll Disable (SPD) command byte is
sent to end the poll sequence.

Refer to “Status and Event Reporting” on page 4-10 for more information on
the GPIB bus lines and the RQS bit.

Example: Executing a Serial Poll
This example shows you how to execute a serial poll for an Agilent 33120A
function generator and a Tektronix TDS 210 oscilloscope. In doing so, the
example shows you how to configure many of the status bits described in
“Standard Event Status Register” on page 4-13:

1 Create instrument objects — Create a GPIB object associated with an
Agilent 33120A function generator at primary address 1.

g1 = gpib('ni',0,1);

Create a GPIB object associated with a Tektronix TDS 210 oscilloscope
at primary address 2.

g2 = gpib('ni',0,2);

4-39

4 Controlling Instruments Using the GPIB

2 Connect to the instrument — Connect g1 to the function generator and
connect g2 to the oscilloscope.

fopen([g1 g2])

3 Configure property values — Configure both objects to time out after 1
second.

set([g1 g2],'Timeout',1)

4 Write and read data — Configure the function generator to request
service when a command error occurs.

fprintf(g1,'*CLS');
fprintf(g1,'*ESE 32');
fprintf(g1,'*SRE 32');

Configure the oscilloscope to request service when a command error occurs.

fprintf(g2,'*CLS')
fprintf(g2,'*PSC 0')
fprintf(g2,'*ESE 32')
fprintf(g2,'DESE 32')
fprintf(g2,'*SRE 32')

Determine if any instrument needs servicing.

spoll([g1 g2])
ans =
[]

Query the voltage value for each instrument.

fprintf(g1,'Volt?')
fprintf(g2,'Volt?')

Determine if either instrument produced an error due to the preceding
query.

out = spoll([g1 g2]);

4-40

Serial Polls

Because Volt? is an invalid command for the oscilloscope, it is requesting
service.

out == [g1 g2]
ans =
0 1

Because Volt? is a valid command for the function generator, the value is
read back successfully.

volt1 = fscanf(g1)
volt1 =
+1.00000E-01

However, the oscilloscope read operation times out after 1 second.

volt2 = fscanf(g2)
Warning: GPIB: NI: An I/O operation has been canceled, most likely
due to a timeout.

volt2 =
''

5 Disconnect and clean up — When you no longer need g1 and g2, you
should disconnect them from the instruments, and remove them from
memory and from the MATLAB workspace.

fclose([g1 g2])
delete([g1 g2])
clear g1 g2

4-41

4 Controlling Instruments Using the GPIB

4-42

5

Controlling Instruments
Using VISA

This chapter describes specific issues related to controlling instruments that
use the VISA standard. The sections are as follows.

VISA Overview (p. 5-3) Brief description of the Virtual
Instrument Standard Architecture
(VISA) standard.

The GPIB Interface (p. 5-5) The VISA-GPIB object establishes
a connection between MATLAB
and the instrument via its GPIB
interface.

The VXI Interface (p. 5-9) The VISA-VXI object establishes a
connection between MATLAB and
the instrument via its VXI interface.

The GPIB-VXI Interface (p. 5-22) The VISA-GPIB-VXI object
establishes a connection between
MATLAB and the instrument via its
GPIB-VXI interface.

The Serial Port Interface (p. 5-27) The VISA serial object establishes a
connection between MATLAB and
the instrument via the serial port.

The USB Interface (p. 5-31) The VISA-USB object establishes a
connection between MATLAB and
the instrument via its USB interface.

5 Controlling Instruments Using VISA

The TCP/IP Interface (p. 5-35) The VISA-TCPIP object establishes
a connection between MATLAB
and the instrument using the
instrument’s IP configuration.

The RSIB Interface (p. 5-39) The VISA-RSIB object establishes a
connection between MATLAB and
the instrument via the Rohde &
Schwarz VISA passport.

5-2

VISA Overview

VISA Overview
Virtual Instrument Standard Architecture (VISA) is a standard defined by
Agilent Technologies and National Instruments for communicating with
instruments regardless of the interface.

The Instrument Control Toolbox supports the GPIB, VXI, GPIB-VXI, and
serial port interfaces using the VISA standard. Communication is established
through a VISA instrument object, which you create in the MATLAB
workspace. For example, a VISA-GPIB object allows you to use the VISA
standard to communicate with an instrument that possesses a GPIB interface.

Note Most features associated with VISA instrument objects are identical
to the features associated with GPIB and serial port objects. Therefore,
this chapter presents only interface-specific functions and properties. For
example, register-based communication is discussed for VISA-VXI objects,
but message-based communication is not discussed as this topic is covered
elsewhere in this guide.

For many VISA applications, you can communicate with your instrument
without detailed knowledge of how the interface works. In this case, you
might want to begin with one of these topics:

• “The GPIB Interface” on page 5-5

• “The VXI Interface” on page 5-9

• “The GPIB-VXI Interface” on page 5-22

• “The Serial Port Interface” on page 5-27

• “The USB Interface” on page 5-31

• “The TCP/IP Interface” on page 5-35

• “The RSIB Interface” on page 5-39

If you want a high-level description of all the steps you are likely to take when
communicating with your instrument, refer to Chapter 2, “The Instrument
Control Session”.

5-3

5 Controlling Instruments Using VISA

Note The Instrument Control Toolbox does not support secondary VISA
installations. The vendor that you specify when creating a VISA object should
refer to the primary VISA installation only. Referring to a secondary VISA
installation could generate unpredictable results.

5-4

The GPIB Interface

The GPIB Interface
The GPIB interface is supported through a VISA-GPIB object. The features
associated with a VISA-GPIB object are similar to the features associated
with a GPIB object. Therefore, only functions and properties that are unique
to VISA’s GPIB interface are discussed in this section. These unique features
are associated with

• “Creating a VISA-GPIB Object” on page 5-5

• “The VISA-GPIB Address” on page 5-7

Refer to Chapter 4, “Controlling Instruments Using the GPIB” to learn about
the GPIB interface, writing and reading text and binary data, using events
and callbacks, using triggers, and so on.

Note The VISA-GPIB object does not support the spoll function, or the
BusManagementStatus, CompareBits, and HandshakeStatus properties.

Creating a VISA-GPIB Object
You create a VISA-GPIB object with the visa function. Each VISA-GPIB
object is associated with

• A GPIB controller installed in your computer

• An instrument with a GPIB interface

visa requires the vendor name and the resource name as input arguments.
The vendor name can be agilent, ni, or tek. The resource name consists of
the GPIB board index, the instrument primary address, and the instrument
secondary address. You can find the VISA-GPIB resource name for a given
instrument with the configuration tool provided by your vendor, or with
the instrhwinfo function. (In place of the resource name, you can use an
alias as defined with your VISA vendor configuration tool.) As described in
“Connecting to the Instrument” on page 2-5, you can also configure properties
during object creation.

5-5

5 Controlling Instruments Using VISA

For example, to create a VISA-GPIB object associated with a National
Instruments controller with board index 0, and a Tektronix TDS 210 digital
oscilloscope with primary address 1 and secondary address 0,

vg = visa('ni','GPIB0::1::0::INSTR');

The VISA-GPIB object vg now exists in the MATLAB workspace. You can
display the class of vg with the whos command.

whos vg
Name Size Bytes Class

vg 1x1 884 visa object

Grand total is 16 elements using 884 bytes

After you create the VISA-GPIB object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the object based on its class type and address information.

VISA-GPIB Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-GPIB object.

RsrcName Indicate the resource name for a VISA instrument.

Type Indicate the object type.

You can display the values of these properties for vg with the get function.

get(vg,{'Name','RsrcName','Type'})
ans =
'VISA-GPIB0-1' 'GPIB0::1::0::INSTR' 'visa-gpib'

The VISA-GPIB Object Display
The VISA-GPIB object provides you with a convenient display that
summarizes important address and state information. You can invoke the
display summary these three ways:

5-6

The GPIB Interface

• Type the VISA-GPIB object at the command line.

• Exclude the semicolon when creating a VISA-GPIB object.

• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by
right-clicking an instrument object and selecting Display Summary from
the context menu.

The display summary for the VISA-GPIB object vg is given below.

VISA-GPIB Object Using NI Adaptor : VISA-GPIB0-1

Communication Address
BoardIndex: 0
PrimaryAddress: 1
SecondaryAddress: 0

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

The VISA-GPIB Address
The VISA-GPIB address consists of

• The board index of the GPIB controller installed in your computer.

• The primary address and secondary address of the instrument. Valid
primary addresses range from 0 to 30. Valid secondary addresses range
from 0 to 30, where the value 0 indicates that the secondary address is
not used.

You must specify the primary address value via the resource name during
VISA-GPIB object creation. Additionally, you must include the board index

5-7

5 Controlling Instruments Using VISA

and secondary address values as part of the resource name if they differ from
the default value of 0.

The properties associated with the GPIB address are given below.

VISA-GPIB Address Properties

Property Name Description

BoardIndex Specify the index number of the GPIB board.

PrimaryAddress Specify the primary address of the GPIB instrument.

SecondaryAddress Specify the secondary address of the GPIB instrument.

The BoardIndex, PrimaryAddress, and SecondaryAddress properties are
automatically updated with the specified resource name values when you
create the VISA-GPIB object.

You can display the address property values for the VISA-GPIB object vg
created in “Creating a VISA-GPIB Object” on page 5-5 with the get function.

get(vg,{'BoardIndex','PrimaryAddress','SecondaryAddress'})
ans =

[0] [1] [0]

5-8

The VXI Interface

The VXI Interface
The VXI interface is associated with a VXI controller that you install in slot
0 of a VXI chassis. This interface, along with the other relevant hardware,
is shown below.

The VXI interface is supported through a VISA-VXI object. Many of the
features associated with a VISA-VXI object are similar to the features
associated with other instrument objects. Therefore, only functions and
properties that are unique to VISA’s VXI interface are discussed in this
section. These unique features are associated with

• “Creating a VISA-VXI Object” on page 5-10

• “The VISA-VXI Address” on page 5-12

• “Register-Based Communication” on page 5-13

Refer to Chapter 4, “Controlling Instruments Using the GPIB” to learn about
general toolbox capabilities such as writing and reading text and binary data,
using events and callbacks, and so on.

5-9

5 Controlling Instruments Using VISA

Creating a VISA-VXI Object
You create a VISA-VXI object with the visa function. Each object is associated
with

• A VXI chassis

• A VXI controller in slot 0 of the VXI chassis

• An instrument installed in the VXI chassis

visa requires the vendor name and the resource name as input arguments.
The vendor name is either agilent or ni. The resource name consists of
the VXI chassis index and the instrument logical address. You can find the
VISA-VXI resource name for a given instrument with the configuration tool
provided by your vendor, or with the instrhwinfo function. (In place of
the resource name, you can use an alias as defined with your VISA vendor
configuration tool.) As described in “Connecting to the Instrument” on page
2-5, you can also configure property values during object creation.

For example, to create a VISA-VXI object associated with a VXI chassis with
index 0 and an Agilent E1432A 16-channel digitizer with logical address 32,

vv = visa('agilent','VXI0::32::INSTR');

The VISA-VXI object vv now exists in the MATLAB workspace. You can
display the class of vv with the whos command.

whos vv
Name Size Bytes Class

vv 1x1 882 visa object

Grand total is 15 elements using 882 bytes

After you create the VISA-VXI object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the object based on its class type and address information.

5-10

The VXI Interface

VISA-VXI Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-VXI object.

RsrcName Indicate the resource name for a VISA instrument.

Type Indicate the object type.

You can display the values of these properties for vv with the get function.

get(vv,{'Name','RsrcName','Type'})
ans =

'VISA-VXI0-32' 'VXI0::32::INSTR' 'visa-vxi'

The VISA-VXI Object Display
The VISA-VXI object provides you with a convenient display that summarizes
important address and state information. You can invoke the display
summary these three ways:

• Type the VISA-VXI object at the command line.

• Exclude the semicolon when creating a VISA-VXI object.

• Exclude the semicolon when configuring properties using the dot notation.

The display summary for the VISA-VXI object vv is given below.

VISA-VXI Object Using AGILENT Adaptor : VISA-VXI0-32

Communication Address
ChassisIndex: 0
LogicalAddress: 32

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0

5-11

5 Controlling Instruments Using VISA

ValuesReceived: 0
ValuesSent: 0

The VISA-VXI Address
The VISA-VXI address consists of

• The chassis index of the VXI chassis

• The logical address of the instrument installed in the VXI chassis

You must specify the logical address value via the resource name during
VISA-VXI object creation. Additionally, you must include the chassis index
value as part of the resource name if it differs from the default value of
0. The properties associated with the chassis and instrument address are
given below.

VISA-VXI Address Properties

Property Name Description

ChassisIndex Indicate the index number of the VXI chassis.

LogicalAddress Specify the logical address of the VXI instrument.

Slot Indicate the slot location of the VXI instrument.

The ChassisIndex and LogicalAddress properties are automatically updated
with the specified resource name values when you create the VISA-VXI object.
The Slot property is automatically updated after the object is connected to
the instrument with the fopen function.

You can display the address property values for the VISA-VXI object vv
created in “Creating a VISA-VXI Object” on page 5-10 with the get function.

fopen(vv)
get(vv,{'ChassisIndex','LogicalAddress','Slot'})
ans =

[0] [32] [2]

5-12

The VXI Interface

Register-Based Communication
VXI instruments are either message-based or register-based. Generally,
it is assumed that message-based instruments are easier to use, while
register-based instruments are faster. A message-based instrument has its
own processor that allows it to interpret high-level commands such as a SCPI
command. Therefore, to communicate with a message-based instrument, you
can use the read and write functions fscanf, fread, fprintf, and fwrite.
For detailed information about these functions, refer to “Communicating with
Your Instrument” on page 2-8.

If the message-based instrument also contains shared memory, then you can
access the shared memory through register-based read and write operations. A
register-based instrument usually does not have its own processor to interpret
high-level commands. Therefore, to communicate with a register-based
instrument, you need to use read and write functions that access the register.

There are two types of register-based write and read functions: low-level and
high-level. The main advantage of the high-level functions is ease of use.
Refer to “Example: Using High-Level Memory Functions” on page 5-16 for
more information. The main advantage of the low-level functions is speed.
Refer to “Example: Using Low-Level Memory Functions” on page 5-19 for
more information.

The functions associated with register-based write and read operations are
given below.

5-13

5 Controlling Instruments Using VISA

VISA-VXI Register-Based Write and Read Functions

Function
Name Description

memmap Map memory for low-level memory read and write
operations.

mempeek Low-level memory read from VXI register.

mempoke Low-level memory write to VXI register.

memread High-level memory read from VXI register.

memunmap Unmap memory for low-level memory read and write
operations.

memwrite High-level memory write to VXI register.

The properties associated with register-based write and read operations are
given below.

5-14

The VXI Interface

VISA-VXI Register-Based Write and Read Properties

Property Name Description

MappedMemoryBase Indicate the base memory address of the mapped
memory.

MappedMemorySize Indicate the size of the mapped memory for
low-level read and write operations.

MemoryBase Indicate the base address of the A24 or A32 space.

MemoryIncrement Specify if the VXI register offset increments after
data is transferred.

MemorySize Indicate the size of the memory requested in the
A24 or A32 address space.

MemorySpace Define the address space used by the instrument.

Example: Understanding Your Instrument’s Register
Characteristics
This example explores the register characteristics for an Agilent E1432A
16-channel 51.2 kSa/s digitizer with a DSP module.

All VXI instruments have an A16 memory space consisting of 64 bytes. It is
known as an A16 space because the addresses are 16 bits wide. Register-based
instruments provide a memory map of the address space that describes the
information contained within the A16 space. Some VXI instruments also
have an A24 or A32 space if the 64 bytes provided by the A16 space are not
enough to perform the necessary tasks. A VXI instrument cannot use both
the A24 and A32 space:

1 Create an instrument object — Create the VISA-VXI object vv
associated with a VXI chassis with index 0, and an Agilent E1432A
digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');

2 Connect to the instrument — Connect vv to the instrument.

fopen(vv)

5-15

5 Controlling Instruments Using VISA

The MemorySpace property indicates the type of memory space the
instrument supports. By default, all instruments support A16 memory
space. However, this property can be A16/A24 or A16/A32 if the instrument
also supports A24 or A32 memory space, respectively.

get(vv,'MemorySpace')
ans =
A16/A24

If the VISA-VXI object is not connected to the instrument, MemorySpace
always returns the default value of A16.

The MemoryBase property indicates the base address of the A24 or A32
space, and is defined as a hexadecimal string. The MemorySize property
indicates the size of the A24 or A32 space. If the VXI instrument supports
only the A16 memory space, MemoryBase defaults to 0H and MemorySize
defaults to 0.

get(vv,{'MemoryBase','MemorySize'})
ans =

'200000H' [262144]

3 Disconnect and clean up — When you no longer need vv, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(vv)
delete(vv)
clear vv

Example: Using High-Level Memory Functions
This example uses the high-level memory functions, memread and memwrite,
to access register information for an Agilent E1432A 16-channel 51.2 kSa/s
digitizer with a DSP module. The main advantage of these high-level
functions is ease of use — you can access multiple registers with one function
call, and the memory that is to be accessed is automatically mapped for
you. The main disadvantage is the lack of speed — they are slower than the
low-level memory functions.

5-16

The VXI Interface

Each register contains 16 bits, and is associated with an offset value that you
supply to memread or memwrite. The first four registers of the digitizer are
accessed in this example, and are described below.

Agilent E1432A Register Information

Register Offset Description

ID 0 This register provides instrument configuration
information and is always defined as CFFF. Bits
15 and 14 are 1, indicating that the instrument is
register-based. Bits 13 and 12 are 0, indicating that
the instrument supports the A24 memory space. The
remaining bits are all 1, indicating the device ID.

Device
Type

2 This register provides instrument configuration
information. Bits 15-12 indicate the memory required
by the A24 space. The remaining bits indicate the
model code for the instrument.

Status 4 This register provides instrument status information.
For example, bit 15 indicates whether you can access
the A24 registers, and bit 6 indicates whether a DSP
communication error occurred.

Offset 6 This register defines the base address of the
instrument’s A24 registers. Bits 15-12 map the VME
Bus address lines A23-A20 for A24 register access.
The remaining bits are all 0.

For more detailed information about these registers, refer to the HP E1432A
User’s Guide.

1 Create an instrument object — Create the VISA-VXI object vv
associated with a VXI chassis with index 0, and an Agilent E1432A digitizer
with logical address is 130.

vv = visa('agilent','VXI0::130::INSTR');

2 Connect to the instrument — Connect vv to the instrument.

fopen(vv)

5-17

5 Controlling Instruments Using VISA

3 Write and read data — The following command performs a high-level
read of the ID Register, which has an offset of 0.

reg1 = memread(vv,0,'uint16','A16')
reg1 =

53247

Convert reg1 to a hexadecimal value and a binary string. Note that the
hex value is CFFF and the least significant 12 bits are all 1, as expected.

dec2hex(reg1)
ans =
CFFF
dec2bin(reg1)
ans =
1100111111111111

You can read multiple registers with memread. The following command
reads the next three registers. An offset of 2 indicates that the read
operation begins with the Device Type Register.

reg24 = memread(vv,2,'uint16','A16',3)
reg24 =

20993
50012
40960

The following commands write to the Offset Register and then read the
value back. Note that if you change the value of this register, you will
not be able to access the A24 space.

memwrite(vv,45056,6,'uint16','A16');
reg4 = memread(vv,6,'uint16','A16')
reg4 =

45056

Note that the least significant 12 bits are all 0, as expected.

dec2bin(reg4,16)
ans =
1011000000000000

5-18

The VXI Interface

Restore the original register value, which is stored in the reg24 variable.

memwrite(vv,reg24(3),6,'uint16','A16');

4 Disconnect and clean up — When you no longer need vv, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(vv)
delete(vv)
clear vv

Example: Using Low-Level Memory Functions
This example uses the low-level memory functions mempeek and mempoke to
access register information for an Agilent E1432A 16-channel 51.2 kSa/s
digitizer with a DSP module. The main advantage of these low-level functions
is speed — they are faster than the high-level memory functions. The main
disadvantages include the inability to access multiple registers with one
function call, errors are not reported, and you must map the memory that
is to be accessed.

For information about the digitizer registers accessed in this example, refer to
“Example: Using High-Level Memory Functions” on page 5-16:

1 Create an instrument object — Create the VISA-VXI object vv
associated with a VXI chassis with index 0, and an Agilent E1432A
digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');

2 Connect to the instrument — Connect vv to the instrument.

fopen(vv)

3 Write and read data — Before you can use the low-level memory
functions, you must first map the memory space with the memmap function.
If the memory requested by memmap does not exist, an error is returned. The
following command maps the first 16 registers of the A16 memory space.

memmap(vv,'A16',0,16);

5-19

5 Controlling Instruments Using VISA

The MappedMemoryBase and MappedMemorySize properties indicate if
memory has been mapped. MappedMemoryBase is the base address of the
mapped memory and is defined as a hexadecimal string. MappedMemorySize
is the size of the mapped memory. These properties are similar to the
MemoryBase and MemorySize properties that describe the A24 or A32
memory space.

get(vv,{'MappedMemoryBase','MappedMemorySize'})
ans =

'16737610H' [16]

The following command performs a low-level read of the ID Register, which
has an offset of 0.

reg1 = mempeek(vv,0,'uint16')
reg1 =

53247

The following command performs a low-level read of the Offset Register,
which has an offset of 6.

reg4 = mempeek(vv,6,'uint16')
reg4 =

40960

The following commands write to the Offset Register and then read the
value back. Note that if you change the value of this register, you will
not be able to access the A24 space.

mempoke(vv,45056,6,'uint16');
mempeek(vv,6,'uint16')
ans =

45056

Restore the original register value.

mempoke(vv,reg4,6,'uint16');

When you have finished accessing the registers, you should unmap the
memory with the memunmap function.

memunmap(vv)

5-20

The VXI Interface

get(vv,{'MappedMemoryBase','MappedMemorySize'})
ans =

'0H' [0]

If memory is still mapped when the object is disconnected from the
instrument, the memory is automatically unmapped for you.

4 Disconnect and clean up — When you no longer need vv, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(vv)
delete(vv)
clear vv

5-21

5 Controlling Instruments Using VISA

The GPIB-VXI Interface
The GPIB-VXI interface is associated with a GPIB-VXI command module that
you install in slot 0 of a VXI chassis. This interface, along with the other
relevant hardware, is shown below.

The GPIB-VXI interface is supported through a VISA-GPIB-VXI object. The
features associated with a VISA-GPIB-VXI object are similar to the features
associated with GPIB and VISA-VXI objects. Therefore, only functions and
properties that are unique to VISA’s GPIB-VXI interface are discussed in this
section. These unique features are associated with

• “Creating a VISA-GPIB-VXI Object” on page 5-23

• “The VISA-GPIB-VXI Address” on page 5-25

Refer to Chapter 4, “Controlling Instruments Using the GPIB” to learn about
writing and reading text and binary data, using events and callbacks, using
triggers, and so on. Refer to “Register-Based Communication” on page 5-13 to
learn about accessing VXI registers.

5-22

The GPIB-VXI Interface

Note The VISA-GPIB-VXI object does not support the spoll and trigger
functions, or the BusManagementStatus, HandshakeStatus, InterruptFcn,
TriggerFcn, TriggerLine, and TriggerType properties.

Creating a VISA-GPIB-VXI Object
You create a VISA-GPIB-VXI object with the visa function. As shown in the
preceding figure, each object is associated with

• A GPIB controller installed in your computer

• A VXI chassis

• A GPIB-VXI command module in slot 0 of the VXI chassis

• An instrument installed in the VXI chassis

visa requires the vendor name and the resource name as input arguments.
The vendor name is either agilent or ni. The resource name consists of
the VXI chassis index and the instrument logical address. You can find the
VISA-GPIB-VXI resource name for a given instrument with the configuration
tool provided by your vendor, or with the instrhwinfo function. (In place of
the resource name, you can use an alias as defined with your VISA vendor
configuration tool.) As described in “Connecting to the Instrument” on page
2-5, you can also configure property values during object creation.

For example, to create a VISA-GPIB-VXI object associated with a VXI chassis
with index 0, an Agilent E1406A Command Module in slot 0, and an Agilent
E1441A Arbitrary Waveform Generator in slot 2 with logical address 80,

vgv = visa('agilent','GPIB-VXI0::80::INSTR');

The VISA-GPIB-VXI object vgv now exists in the MATLAB workspace. You
can display the class of vgv with the whos command.

whos vgv
Name Size Bytes Class

vgv 1x1 892 visa object

Grand total is 20 elements using 892 bytes

5-23

5 Controlling Instruments Using VISA

After you create the VISA-GPIB-VXI object, the properties listed below
are automatically assigned values. These properties provide descriptive
information about the object based on its class type and address information.

VISA-GPIB-VXI Descriptive Properties

Property
Name Description

Name Specify a descriptive name for the VISA-GPIB-VXI object.

RsrcName Indicate the resource name for a VISA instrument.

Type Indicate the object type.

You can display the values of these properties for vgv with the get function.

get(vgv,{'Name','RsrcName','Type'})
ans =
'VISA-GPIB-VXI0-80' 'GPIB-VXI0::80::INSTR' 'visa-gpib-vxi'

Note The GPIB-VXI communication interface is a combination of the
GPIB and VXI interfaces. Therefore, you can also use a VISA-GPIB object
to communicate with instruments installed in the VXI chassis, or to
communicate with non-VXI instruments connected to the slot 0 controller.

The VISA-GPIB-VXI Object Display
The VISA-GPIB-VXI object provides you with a convenient display that
summarizes important address and state information. You can invoke the
display summary these three ways:

• Type the VISA-GPIB-VXI object at the command line.

• Exclude the semicolon when creating a VISA-GPIB-VXI object.

• Exclude the semicolon when configuring properties using the dot notation.

The display summary for the VISA-GPIB-VXI object vgv is given below.

VISA-GPIB-VXI Object Using AGILENT Adaptor : VISA-GPIB-VXI0-80

5-24

The GPIB-VXI Interface

Communication Address
ChassisIndex: 0
LogicalAddress: 80

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

The VISA-GPIB-VXI Address
The VISA-GPIB-VXI address consists of a VXI component and a GPIB
component. The VXI component includes

• The chassis index of the VXI chassis

• The logical address of the VXI instrument; the logical address must be 0,
or it must be divisible by 8

• The slot of the VXI instrument

The GPIB component includes

• The board index of the GPIB controller installed in your computer

• The primary address of the GPIB-VXI command module in slot 0

• The secondary address of the VXI instrument

You must specify the logical address value via the resource name during
VISA-GPIB-VXI object creation. Additionally, you must include the chassis
index value as part of the resource name if it differs from the default value of 0.
The properties associated with the VISA-GPIB-VXI address are given below.

5-25

5 Controlling Instruments Using VISA

VISA-GPIB-VXI Address Properties

Property Name Description

BoardIndex Indicate the index number of the GPIB board.

ChassisIndex Specify the index number of the VXI chassis.

LogicalAddress Specify the logical address of the VXI instrument.

PrimaryAddress Indicate the primary address of the GPIB-VXI
command module.

SecondaryAddress Indicate the secondary address of the VXI instrument.

Slot Indicate the slot location of the VXI instrument.

The ChassisIndex and LogicalAddress properties are automatically updated
with the specified resource name values when you create the VISA-GPIB-VXI
object. The BoardIndex, PrimaryAddress, SecondaryAddress, and Slot
properties are automatically updated after the object is connected to the
instrument with the fopen function.

You can display the address property values for the VISA-GPIB-VXI object
vgv created in “Creating a VISA-GPIB-VXI Object” on page 5-23 with the
get function.

fopen(vgv)
get(vgv,{'BoardIndex','ChassisIndex','LogicalAddress',...
'PrimaryAddress','SecondaryAddress','Slot'})
ans =

[0] [0] [80] [9] [10] [2]

5-26

The Serial Port Interface

The Serial Port Interface
The serial port interface is supported through a VISA-serial object. The
features associated with a VISA-serial object are similar to the features
associated with a serial port object. Therefore, only functions and properties
that are unique to VISA’s serial port interface are discussed in this section.
These unique features are associated with

• “Creating a VISA-Serial Object” on page 5-27

• “Configuring Communication Settings” on page 5-29

Refer to Chapter 6, “Controlling Instruments Using the Serial Port” to learn
about writing and reading text and binary data, using events and callbacks,
using serial port control lines, and so on.

Note The VISA-serial object does not support the serialbreak function, the
BreakInterruptFcn property, and the PinStatusFcn property.

Creating a VISA-Serial Object
You create a VISA-serial object with the visa function. Each VISA-serial
object is associated with an instrument connected to a serial port on your
computer.

visa requires the vendor name and the resource name as input arguments.
The vendor name can be agilent, ni, or tek. The resource name consists of
the name of the serial port connected to your instrument. You can find the
VISA-serial resource name for a given instrument with the configuration
tool provided by your vendor, or with the instrhwinfo function. (In place of
the resource name, you can use an alias as defined with your VISA vendor
configuration tool.) As described in “Connecting to the Instrument” on page
2-5, you can also configure property values during object creation.

For example, to create a VISA-serial object that is associated with the COM1
port, and that uses National Instruments VISA,

vs = visa('ni','ASRL1::INSTR');

5-27

5 Controlling Instruments Using VISA

The VISA-serial object vs now exists in the MATLAB workspace. You can
display the class of vs with the whos command.

whos vs
Name Size Bytes Class

vs 1x1 888 visa object

Grand total is 18 elements using 888 bytes

After you create the VISA-serial object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the object based on its class type and address information.

VISA-Serial Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-serial object.

Port Indicate the serial port name.

RsrcName Indicate the resource name for a VISA instrument.

Type Indicate the object type.

You can display the values of these properties for vs with the get function.

get(vs,{'Name','Port','RsrcName','Type'})
ans =
'VISA-Serial-ASRL1' 'ASRL1' 'ASRL1::INSTR' 'visa-serial'

The VISA-Serial Object Display
The VISA-serial object provides you with a convenient display that
summarizes important address and state information. You can invoke the
display summary these three ways:

• Type the VISA-serial object at the command line.

• Exclude the semicolon when creating a VISA-serial object.

• Exclude the semicolon when configuring properties using the dot notation.

5-28

The Serial Port Interface

The display summary for the VISA-serial object vs is given below.

VISA-Serial Object Using NI Adaptor : VISA-Serial-ASRL1

Communication Settings
Port: ASRL1
BaudRate: 9600
Terminator: 'LF'

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

Configuring Communication Settings
Before you can write or read data, both the VISA-serial object and the
instrument must have identical communication settings. Configuring serial
port communications involves specifying values for properties that control
the baud rate and the “Serial Data Format” on page 6-8. These properties
are given below.

5-29

5 Controlling Instruments Using VISA

VISA-Serial Communication Properties

Property
Name Description

BaudRate Specify the rate at which bits are transmitted.

DataBits Specify the number of data bits to transmit.

Parity Specify the type of parity checking.

StopBits Specify the number of bits used to indicate the end of a byte.

Terminator Specify the character used to terminate commands written
to the instrument.

Refer to your instrument documentation for an explanation of its supported
communication settings. Note that the valid values for StopBits are 1 and 2
and the valid values for Terminator do not include CR/LF and LF/CR. These
property values differ from the values supported for the serial port object.

You can display the default communication property values for the VISA-serial
object vs created in “Creating a VISA-Serial Object” on page 5-27 with the
get function.

get(vs,{'BaudRate','DataBits','Parity','StopBits','Terminator'})
ans =

[9600] [8] 'none' [1] 'LF'

5-30

The USB Interface

The USB Interface
The USB interface is supported through a VISA-USB object. The unique
features of a VISA-USB object are associated with

• “Creating a VISA-USB Object” on page 5-31

• “The VISA-USB Address” on page 5-33

Creating a VISA-USB Object
You create a VISA-USB object with the visa function. Each VISA-USB object
is associated with an instrument connected to a USB port on your computer.

visa requires the vendor name and the resource name as input arguments.
The vendor name can be agilent, ni, or tek. The resource name consists
of the USB board index, manufacturer ID, model code, serial number, and
interface number of the connected instrument. You can find the VISA-USB
resource name for a given instrument with the configuration tool provided
by your vendor, or with the instrhwinfo function. (In place of the resource
name, you can use an alias as defined with your VISA vendor configuration
tool.) As described in “Connecting to the Instrument” on page 2-5, you can
also configure property values during object creation.

For example, to create a VISA-USB object that uses National Instruments
VISA,

vu = visa('ni','USB::0x1234::125::A22-5::INSTR');

The VISA-USB object vu now exists in the MATLAB workspace. You can
display the class of vu with the whos command.

whos vu
Name Size Bytes Class

vu 1x1 882 visa object

Grand total is 15 elements using 882 bytes

5-31

5 Controlling Instruments Using VISA

After you create the VISA-USB object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the object based on its class type and address information.

VISA-USB Descriptive Properties

Property
Name Description

Name Specify a descriptive name for the VISA-USB object.

RsrcName Indicate the resource name for a VISA instrument.

Type Indicate the object type.

You can display the values of these properties for vs with the get function.

get(vu,{'Name','RsrcName','Type'})
ans =
'VISA-USB-0-0x1234-125-A22-5-0' 'USB::0x1234::125::A22-5::INSTR'
'visa-usb'

The VISA-USB Object Display
The VISA-USB object provides you with a convenient display that summarizes
important address and state information. You can invoke the display
summary these three ways:

• Type the VISA-USB object at the command line.

• Exclude the semicolon when creating a VISA-USB object.

• Exclude the semicolon when configuring properties using the dot notation.

The display summary for the VISA-USB object vs is given below.

VISA-USB Object Using NI Adaptor : VISA-USB-0-0x1234-125-A22-5-0

Communication Address
ManufacturerID: 0x1234
ModelCode: 125
SerialNumber: A22-5

5-32

The USB Interface

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

The VISA-USB Address
The VISA-USB address consists of

• Board index (optional, from the VISA configuration)

• Manufacturer ID of the instrument

• Model code of the instrument

• Serial number of the instrument

• Interface number (optional, from the VISA configuration)

You specify these address property values via the resource name during
VISA-USB object creation. The instrument address properties are given below.

VISA-USB Address Properties

Property Name Description

BoardIndex Specify the index number of the USB board in VISA
configuration (optional — defaults to 0).

InterfaceIndex Specify the USB interface number (optional).

ManufacturerID Specify the manufacturer ID of the USB instrument.

ModelCode Specify the model code of the USB instrument.

SerialNumber Specify the index of the USB instrument on the USB
hub.

The properties are automatically updated with the specified resource name
values when you create the VISA-USB object.

5-33

5 Controlling Instruments Using VISA

With the get function, you can display the address property values for the
VISA-USB object vu, created in “Creating a VISA-USB Object” on page 5-31.

fopen(vu)
get(vu,{'ManufacturerID','ModelCode','SerialNumber'})
ans =

[0x1234] [125] [A22-5]

5-34

The TCP/IP Interface

The TCP/IP Interface
The TCP/IP interface is supported through a VISA-TCPIP object. The
features associated with a VISA-TCPIP object are similar to the features
associated with a tcpip object. Therefore, only functions and properties that
are unique to VISA’s TCP/IP interface are discussed in this section. These
unique features are associated with

• “Creating a VISA-TCPIP Object” on page 5-35

• “The VISA-TCPIP Address” on page 5-37

Refer to Chapter 7, “Controlling Instruments Using TCP/IP and UDP” to
learn about writing and reading text and binary data, using events and
callbacks, and so on.

Creating a VISA-TCPIP Object
You create a VISA-TCPIP object with the visa function. Each VISA-TCPIP
object is associated with an instrument connected to your computer.

visa requires the vendor name and the resource name as input arguments.
The vendor name can be agilent, ni, or tek. The resource name consists of
the TPC/IP board index, IP address or host name, and LAN device name of
your instrument. You can find the VISA-TCPIP resource name for a given
instrument with the configuration tool provided by your vendor, or with
the instrhwinfo function. (In place of the resource name, you can use an
alias as defined with your VISA vendor configuration tool.) As described in
“Connecting to the Instrument” on page 2-5, you can also configure property
values during object creation.

For example, to create a VISA-TCPIP object that uses National Instruments
VISA associated with an instrument at IP address 216.148.60.170,

vt = visa('ni','TCPIP::216.148.60.170::INSTR');

5-35

5 Controlling Instruments Using VISA

The VISA-TCPIP object vs now exists in the MATLAB workspace. You can
display the class of vs with the whos command.

whos vt
Name Size Bytes Class

vt 1x1 886 visa object

Grand total is 17 elements using 886 bytes

After you create the VISA-TCPIP object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the object based on its class type and address information.

VISA-TCPIP Descriptive Properties

Property
Name Description

Name Specify a descriptive name for the VISA-TCPIP object.

RsrcName Indicate the resource name for a VISA instrument.

Type Indicate the object type.

You can display the values of these properties for vs with the get function.

get(vt,{'Name','RsrcName','Type'})
ans =
'VISA-TCPIP-216.148.60.170' 'TCPIP::216.148.60.170::INSTR'
'visa-tcpip'

The VISA-TCPIP Object Display
The VISA-TCPIP object provides you with a convenient display that
summarizes important address and state information. You can invoke the
display summary these three ways:

• Type the VISA-TCPIP object at the command line.

• Exclude the semicolon when creating a VISA-TCPIP object.

• Exclude the semicolon when configuring properties using the dot notation.

5-36

The TCP/IP Interface

The display summary for the VISA-TCPIP object vs is given below.

VISA-TCPIP Object Using NI Adaptor : VISA-TCPIP-216.148.60.170

Communication Address
RemoteHost: 216.148.60.170

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

The VISA-TCPIP Address
The VISA-TCPIP address consists of

• Board index (optional, from the VISA configuration)

• Remote host of the instrument

• LAN device name of the instrument (optional)

You specify these address property values via the resource name during
VISA-TCPIP object creation. The instrument address properties are given
below.

VISA-TCPIP Address Properties

Property Name Description

BoardIndex Specify the index number of the TCP/IP board in
VISA configuration (optional — defaults to 0).

5-37

5 Controlling Instruments Using VISA

VISA-TCPIP Address Properties (Continued)

Property Name Description

RemoteHost Specify the remote host name or IP address of the
instrument.

LANName Specify the LAN device name of the instrument.

The properties are automatically updated with the specified resource name
values when you create the VISA-TCPIP object.

With the get function, you can display the address property values for the
VISA-TCPIP object vt, created in “Creating a VISA-TCPIP Object” on page
5-35.

fopen(vt)
get(vt,{'RemoteHost'})
ans =

[216.148.60.170]

5-38

The RSIB Interface

The RSIB Interface
The RSIB interface is supported through a VISA-RSIB object. The unique
features of a VISA-RSIB object are associated with

• “Creating a VISA-RSIB Object” on page 5-39

• “The VISA-RSIB Address” on page 5-41

Creating a VISA-RSIB Object
You create a VISA-RSIB object with the visa function. Each VISA-RSIB
object is associated with an instrument connected to your computer.

visa requires the vendor name and the resource name as input arguments.
The only supported vendor name is ni. The resource name consists of the
IP address or host name of the instrument. You can find the VISA-RSIB
resource name for a given instrument with the configuration tool provided
by your vendor, or with the instrhwinfo function. (In place of the resource
name, you can use an alias as defined with your VISA vendor configuration
tool.) As described in “Connecting to the Instrument” on page 2-5, you can
also configure properties during object creation.

For example, to create a VISA-RSIB object that uses National Instruments
VISA and associated with an instrument with IP address 192.168.1.33,

vr = visa('ni','RSIB::192.168.1.33::INSTR');

The VISA-RSIB object vr now exists in the MATLAB workspace. You can
display the class of vr with the whos command.

whos vr
Name Size Bytes Class

vr 1x1 884 visa object

Grand total is 16 elements using 884 bytes

After you create the VISA-RSIB object, the properties listed below are
automatically assigned values. These properties provide descriptive
information about the object based on its class type and address information.

5-39

5 Controlling Instruments Using VISA

VISA-RSIB Descriptive Properties

Property Name Description

Name Specify a descriptive name for the VISA-RSIB object.

RsrcName Indicate the resource name for a VISA instrument.

Type Indicate the object type.

You can display the values of these properties for vr with the get function.

get(vr,{'Name','RsrcName','Type'})
ans =

'VISA-RSIB0-192.168.1.33' 'RSIB0::192.168.1.33::INSTR'
'visa-RSIB'

The VISA-RSIB Object Display
The VISA-RSIB object provides you with a convenient display that
summarizes important address and state information. You can invoke the
display summary these three ways:

• Type the VISA-RSIB object at the command line.

• Exclude the semicolon when creating a VISA-RSIB object.

• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by
right-clicking an instrument object and selecting Display Summary from
the context menu.

The display summary for the VISA-RSIB object vr is given below.

VISA-RSIB Object Using NI Adaptor : VISA-RSIB-192.168.1.33

Communication Address
RemoteHost: 192.168.1.33

Communication State
Status: closed
RecordStatus: off

5-40

The RSIB Interface

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

The VISA-RSIB Address
The VISA-RSIB address consists of

• Remote host of the instrument

You specify the address property value via the resource name during
VISA-RSIB object creation. The instrument address property is given below.

VISA-RSIB Address Property

Property
Name Description

RemoteHost Specify the remote host name or IP address of the
instrument

The property is automatically updated with the specified resource name value
when you create the VISA-RSIB object.

With the get function, you can display the address property value for the
VISA-RSIB object vr, created in “Creating a VISA-RSIB Object” on page 5-39.

fopen(vr)
get(vr,{'RemoteHost'})
ans =

[192.168.1.33]

5-41

5 Controlling Instruments Using VISA

5-42

6

Controlling Instruments
Using the Serial Port

This chapter describes specific issues related to controlling instruments that
use the serial port. The sections are as follows.

Serial Port Overview (p. 6-2) Basic features of the serial port.

Creating a Serial Port Object
(p. 6-15)

The serial port object establishes a
connection between MATLAB and
the instrument via serial port.

Configuring Communication
Settings (p. 6-17)

Communication settings are
associated with the baud rate and
serial data format.

Writing and Reading Data (p. 6-18) Port-specific issues related to writing
and reading data with a serial port
object.

Events and Callbacks (p. 6-23) Enhance your instrument control
application using events and
callbacks.

Using Control Pins (p. 6-28) The control pins allow you to signal
the presence of connected devices
and to control the flow of data.

6 Controlling Instruments Using the Serial Port

Serial Port Overview
This section provides an overview of the serial port. Topics include

• “What Is Serial Communication?” on page 6-2

• “The Serial Port Interface Standard” on page 6-2

• “Connecting Two Devices with a Serial Cable” on page 6-3

• “Serial Port Signals and Pin Assignments” on page 6-4

• “Serial Data Format” on page 6-8

• “Finding Serial Port Information for Your Platform” on page 6-12

For many serial port applications, you can communicate with your instrument
without detailed knowledge of how the serial port works. Communication is
established through a serial port object, which you create in the MATLAB
workspace.

If your application is straightforward, or if you are already familiar with the
topics mentioned above, you might want to begin with “Creating a Serial Port
Object” on page 6-15. If you want a high-level description of all the steps
you are likely to take when communicating with your instrument, refer to
Chapter 2, “The Instrument Control Session”.

What Is Serial Communication?
Serial communication is the most common low-level protocol for
communicating between two or more devices. Normally, one device is a
computer, while the other device can be a modem, a printer, another computer,
or a scientific instrument such as an oscilloscope or a function generator.

As the name suggests, the serial port sends and receives bytes of information
in a serial fashion — one bit at a time. These bytes are transmitted using
either a binary format or a text (ASCII) format.

The Serial Port Interface Standard
Over the years, several serial port interface standards for connecting
computers to peripheral devices have been developed. These standards

6-2

Serial Port Overview

include RS-232, RS-422, and RS-485 — all of which are supported by the
serial port object. Of these, the most widely used standard is RS-232, which
stands for Recommended Standard number 232.

The current version of this standard is designated as TIA/EIA-232C, which
is published by the Telecommunications Industry Association. However, the
term “RS-23“ is still in popular use, and is used in this guide when referring to
a serial communication port that follows the TIA/EIA-232 standard. RS-232
defines these serial port characteristics:

• The maximum bit transfer rate and cable length

• The names, electrical characteristics, and functions of signals

• The mechanical connections and pin assignments

Primary communication is accomplished using three pins: the Transmit Data
pin, the Receive Data pin, and the Ground pin. Other pins are available for
data flow control, but are not required.

Note In this guide, it is assumed you are using the RS-232 standard. Refer to
your device documentation to see which interface standard you can use.

Connecting Two Devices with a Serial Cable
The RS-232 standard defines the two devices connected with a serial cable
as the Data Terminal Equipment (DTE) and Data Circuit-Terminating
Equipment (DCE). This terminology reflects the RS-232 origin as a standard
for communication between a computer terminal and a modem.

Throughout this guide, your computer is considered a DTE, while peripheral
devices such as modems and printers are considered DCEs. Note that many
scientific instruments function as DTEs.

Because RS-232 mainly involves connecting a DTE to a DCE, the pin
assignments are defined such that straight-through cabling is used, where
pin 1 is connected to pin 1, pin 2 is connected to pin 2, and so on. A DTE to
DCE serial connection using the transmit data (TD) pin and the receive data

6-3

6 Controlling Instruments Using the Serial Port

(RD) pin is shown below. Refer to “Serial Port Signals and Pin Assignments”
on page 6-4 for more information about serial port pins.

If you connect two DTEs or two DCEs using a straight serial cable, then the
TD pin on each device is connected to the other, and the RD pin on each device
is connected to the other. Therefore, to connect two like devices, you must use
a null modem cable. As shown below, null modem cables cross the transmit
and receive lines in the cable.

Note You can connect multiple RS-422 or RS-485 devices to a serial port. If
you have an RS-232/RS-485 adaptor, then you can use the serial port object
with these devices.

Serial Port Signals and Pin Assignments
Serial ports consist of two signal types: data signals and control signals. To
support these signal types, as well as the signal ground, the RS-232 standard
defines a 25-pin connection. However, most PCs and UNIX platforms use
a 9-pin connection. In fact, only three pins are required for serial port
communications: one for receiving data, one for transmitting data, and one
for the signal ground.

The pin assignment scheme for a 9-pin male connector on a DTE is given
below.

6-4

Serial Port Overview

The pins and signals associated with the 9-pin connector are described
below. Refer to the RS-232 standard for a description of the signals and pin
assignments used for a 25-pin connector.

Serial Port Pin and Signal Assignments

Pin Label Signal Name Signal Type

1 CD Carrier Detect Control

2 RD Received Data Data

3 TD Transmitted Data Data

4 DTR Data Terminal Ready Control

5 GND Signal Ground Ground

6 DSR Data Set Ready Control

7 RTS Request to Send Control

8 CTS Clear to Send Control

9 RI Ring Indicator Control

The term “data set” is synonymous with “modem” or “device,” while the term
“data terminal” is synonymous with “computer.”

Note The serial port pin and signal assignments are with respect to the DTE.
For example, data is transmitted from the TD pin of the DTE to the RD pin
of the DCE.

Signal States
Signals can be in either an active state or an inactive state. An active state
corresponds to the binary value 1, while an inactive state corresponds to the
binary value 0. An active signal state is often described as logic 1, on, true,

6-5

6 Controlling Instruments Using the Serial Port

or a mark. An inactive signal state is often described as logic 0, off, false, or
a space.

For data signals, the “on” state occurs when the received signal voltage is more
negative than -3 volts, while the “off” state occurs for voltages more positive
than 3 volts. For control signals, the “on” state occurs when the received
signal voltage is more positive than 3 volts, while the “off” state occurs for
voltages more negative than -3 volts. The voltage between -3 volts and +3
volts is considered a transition region, and the signal state is undefined.

To bring the signal to the “on” state, the controlling device unasserts (or
lowers) the value for data pins and asserts (or raises) the value for control
pins. Conversely, to bring the signal to the “off” state, the controlling device
asserts the value for data pins and unasserts the value for control pins.

The “on” and “off” states for a data signal and for a control signal are shown
below.

The Data Pins
Most serial port devices support full-duplex communication meaning that
they can send and receive data at the same time. Therefore, separate pins
are used for transmitting and receiving data. For these devices, the TD, RD,
and GND pins are used. However, some types of serial port devices support
only one-way or half-duplex communications. For these devices, only the

6-6

Serial Port Overview

TD and GND pins are used. In this guide, it is assumed that a full-duplex
serial port is connected to your device.

The TD pin carries data transmitted by a DTE to a DCE. The RD pin carries
data that is received by a DTE from a DCE.

The Control Pins
9-pin serial ports provide several control pins that

• Signal the presence of connected devices

• Control the flow of data

The control pins include RTS and CTS, DTR and DSR, CD, and RI.

The RTS and CTS Pins. The RTS and CTS pins are used to signal whether
the devices are ready to send or receive data. This type of data flow
control — called hardware handshaking — is used to prevent data loss
during transmission. When enabled for both the DTE and DCE, hardware
handshaking using RTS and CTS follows these steps:

1 The DTE asserts the RTS pin to instruct the DCE that it is ready to receive
data.

2 The DCE asserts the CTS pin indicating that it is clear to send data over
the TD pin. If data can no longer be sent, the CTS pin is unasserted.

3 The data is transmitted to the DTE over the TD pin. If data can no
longer be accepted, the RTS pin is unasserted by the DTE and the data
transmission is stopped.

To enable hardware handshaking, refer to “Controlling the Flow of Data:
Handshaking” on page 6-31.

The DTR and DSR Pins. Many devices use the DSR and DTR pins to signal if
they are connected and powered. Signaling the presence of connected devices
using DTR and DSR follows these steps:

1 The DTE asserts the DTR pin to request that the DCE connect to the
communication line.

6-7

6 Controlling Instruments Using the Serial Port

2 The DCE asserts the DSR pin to indicate that it is connected.

3 DCE unasserts the DSR pin when it is disconnected from the
communication line.

The DTR and DSR pins were originally designed to provide an alternative
method of hardware handshaking. However, the RTS and CTS pins are
usually used in this way, and not the DSR and DTR pins. However, you should
refer to your device documentation to determine its specific pin behavior.

The CD and RI Pins. The CD and RI pins are typically used to indicate the
presence of certain signals during modem-modem connections.

CD is used by a modem to signal that it has made a connection with another
modem, or has detected a carrier tone. CD is asserted when the DCE is
receiving a signal of a suitable frequency. CD is unasserted if the DCE is not
receiving a suitable signal.

RI is used to indicate the presence of an audible ringing signal. RI is asserted
when the DCE is receiving a ringing signal. RI is unasserted when the DCE is
not receiving a ringing signal (for example, it’s between rings).

Serial Data Format
The serial data format includes one start bit, between five and eight data bits,
and one stop bit. A parity bit and an additional stop bit might be included in
the format as well. The diagram below illustrates the serial data format.

The format for serial port data is often expressed using the following notation:

number of data bits - parity type - number of stop bits

For example, 8-N-1 is interpreted as eight data bits, no parity bit, and one stop
bit, while 7-E-2 is interpreted as seven data bits, even parity, and two stop bits.

6-8

Serial Port Overview

The data bits are often referred to as a character because these bits usually
represent an ASCII character. The remaining bits are called framing bits
because they frame the data bits.

Bytes Versus Values
The collection of bits that compose the serial data format is called a byte. At
first, this term might seem inaccurate because a byte is 8 bits and the serial
data format can range between 7 bits and 12 bits. However, when serial data
is stored on your computer, the framing bits are stripped away, and only the
data bits are retained. Moreover, eight data bits are always used regardless
of the number of data bits specified for transmission, with the unused bits
assigned a value of 0.

When reading or writing data, you might need to specify a value, which
can consist of one or more bytes. For example, if you read one value from a
device using the int32 format, then that value consists of four bytes. For
more information about reading and writing values, refer to “Writing and
Reading Data” on page 6-18.

Synchronous and Asynchronous Communication
The RS-232 standard supports two types of communication protocols:
synchronous and asynchronous.

Using the synchronous protocol, all transmitted bits are synchronized to a
common clock signal. The two devices initially synchronize themselves to each
other, and then continually send characters to stay synchronized. Even when
actual data is not really being sent, a constant flow of bits allows each device
to know where the other is at any given time. That is, each bit that is sent is
either actual data or an idle character. Synchronous communications allows
faster data transfer rates than asynchronous methods, because additional bits
to mark the beginning and end of each data byte are not required.

Using the asynchronous protocol, each device uses its own internal clock
resulting in bytes that are transferred at arbitrary times. So, instead of using
time as a way to synchronize the bits, the data format is used.

In particular, the data transmission is synchronized using the start bit
of the word, while one or more stop bits indicate the end of the word.

6-9

6 Controlling Instruments Using the Serial Port

The requirement to send these additional bits causes asynchronous
communications to be slightly slower than synchronous. However, it has the
advantage that the processor does not have to deal with the additional idle
characters. Most serial ports operate asynchronously.

Note When used in this guide, the terms “synchronous” and “asynchronous”
refer to whether read or write operations block access to the MATLAB
command line.

How Are the Bits Transmitted?
By definition, serial data is transmitted one bit at a time. The order in which
the bits are transmitted follows these steps:

1 The start bit is transmitted with a value of 0.

2 The data bits are transmitted. The first data bit corresponds to the least
significant bit (LSB), while the last data bit corresponds to the most
significant bit (MSB).

3 The parity bit (if defined) is transmitted.

4 One or two stop bits are transmitted, each with a value of 1.

The number of bits transferred per second is given by the baud rate. The
transferred bits include the start bit, the data bits, the parity bit (if defined),
and the stop bits.

Start and Stop Bits
As described in “Synchronous and Asynchronous Communication” on page 6-9,
most serial ports operate asynchronously. This means that the transmitted
byte must be identified by start and stop bits. The start bit indicates when the
data byte is about to begin and the stop bit(s) indicates when the data byte
has been transferred. The process of identifying bytes with the serial data
format follows these steps:

1 When a serial port pin is idle (not transmitting data), then it is in an “on”
state.

6-10

Serial Port Overview

2 When data is about to be transmitted, the serial port pin switches to an
“off” state due to the start bit.

3 The serial port pin switches back to an “on” state due to the stop bit(s).
This indicates the end of the byte.

Data Bits
The data bits transferred through a serial port might represent device
commands, sensor readings, error messages, and so on. The data can be
transferred as either binary data or as text (ASCII) data.

Most serial ports use between five and eight data bits. Binary data is typically
transmitted as eight bits. Text-based data is transmitted as either seven bits
or eight bits. If the data is based on the ASCII character set, then a minimum
of seven bits is required because there are 27 or 128 distinct characters. If
an eighth bit is used, it must have a value of 0. If the data is based on the
extended ASCII character set, then eight bits must be used because there are
28 or 256 distinct characters.

The Parity Bit
The parity bit provides simple error (parity) checking for the transmitted
data. The types of parity checking are given below.

Parity Types

Parity Type Description

Even The data bits plus the parity bit produce an even
number of 1s.

Mark The parity bit is always 1.

Odd The data bits plus the parity bit produce an odd
number of 1s.

Space The parity bit is always 0.

Mark and space parity checking are seldom used because they offer minimal
error detection. You might choose not to use parity checking at all.

6-11

6 Controlling Instruments Using the Serial Port

The parity checking process follows these steps:

1 The transmitting device sets the parity bit to 0 or to 1 depending on the
data bit values and the type of parity checking selected.

2 The receiving device checks if the parity bit is consistent with the
transmitted data. If it is, then the data bits are accepted. If it is not, then
an error is returned.

Note Parity checking can detect only 1 bit errors. Multiple-bit errors can
appear as valid data.

For example, suppose the data bits 01110001 are transmitted to your
computer. If even parity is selected, then the parity bit is set to 0 by the
transmitting device to produce an even number of 1s. If odd parity is selected,
then the parity bit is set to 1 by the transmitting device to produce an odd
number of 1s.

Finding Serial Port Information for Your Platform
This section describes how to find serial port information using the resources
provided by Windows and UNIX platforms.

Note Your operating system provides default values for all serial port
settings. However, these settings are overridden by your MATLAB code, and
will have no effect on your serial port application.

You can also use the instrhwinfo function to return the available serial
ports programmatically.

Windows Platform
You can access serial port information through the System Properties dialog
box. To access this in Window XP,

1 Right-click My Computer on the desktop, and select Properties.

6-12

Serial Port Overview

2 In the System Properties dialog box, click the Hardware tab.

3 Click Device Manager.

4 In the Device Manager dialog box, expand the Ports node.

5 Double-click the Communications Port (COM1) node.

6 Select the Port Settings tab.

The resulting Ports dialog box is shown below.

UNIX Platform
To find serial port information for UNIX platforms, you need to know the serial
port names. These names might vary between different operating systems.

On Linux, serial port devices are typically named ttyS0, ttyS1, and so on.
You can use the setserial command to display or configure serial port
information. For example, to display which serial ports are available,

setserial -bg /dev/ttyS*
/dev/ttyS0 at 0x03f8 (irq = 4) is a 16550A

6-13

6 Controlling Instruments Using the Serial Port

/dev/ttyS1 at 0x02f8 (irq = 3) is a 16550A

To display detailed information about ttyS0,

setserial -ag /dev/ttyS0
/dev/ttyS0, Line 0, UART: 16550A, Port: 0x03f8, IRQ: 4

Baud_base: 115200, close_delay: 50, divisor: 0
closing_wait: 3000, closing_wait2: infinte
Flags: spd_normal skip_test session_lockout

Note If the setserial -ag command does not work, make sure that you
have read and write permission for the port.

For all supported UNIX platforms, you can use the stty command to display
or configure serial port information. For example, to display serial port
properties for ttyS0,

stty -a < /dev/ttyS0

To configure the baud rate to 4800 bits per second,

stty speed 4800 < /dev/ttyS0 > /dev/ttyS0

6-14

Creating a Serial Port Object

Creating a Serial Port Object
You create a serial port object with the serial function. serial requires the
name of the serial port connected to your device as an input argument. As
described in “Configuring Properties During Object Creation” on page 3-2, you
can also configure property values during object creation.

Each serial port object is associated with one serial port. For example, to
create a serial port object associated with the COM1 port,

s = serial('COM1');

The serial port object s now exists in the MATLAB workspace. You can
display the class of s with the whos command.

whos s
Name Size Bytes Class

s 1x1 512 serial object

Grand total is 11 elements using 512 bytes

Once the serial port object is created, the properties listed below are
automatically assigned values. These general purpose properties provide
descriptive information about the serial port object based on the object type
and the serial port.

Serial Port Descriptive Properties

Property
Name Description

Name Specify a descriptive name for the serial port object.

Port Indicate the platform-specific serial port name.

Type Indicate the object type.

You can display the values of these properties for s with the get function.

get(s,{'Name','Port','Type'})
ans =

6-15

6 Controlling Instruments Using the Serial Port

'Serial-COM1' 'COM1' 'serial'

Note The serial port is not locked by MATLAB, so other applications or other
instances of MATLAB can access the same serial port. This might result in a
conflict, with unpredicatable results.

The Serial Port Object Display
The serial port object provides you with a convenient display that summarizes
important configuration and state information. You can invoke the display
summary these three ways:

• Type the serial port object variable name at the command line.

• Exclude the semicolon when creating a serial port object.

• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by
right-clicking an instrument object and selecting Display Summary from
the context menu.

The display summary for the serial port object s is given below.

Serial Port Object : Serial-COM1

Communication Settings
Port: COM1
BaudRate: 9600
Terminator: 'LF'

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

6-16

Configuring Communication Settings

Configuring Communication Settings
Before you can write or read data, both the serial port object and the
instrument must have identical communication settings. Configuring serial
port communications involves specifying values for properties that control
the baud rate and the “Serial Data Format” on page 6-8. These properties
are given below.

Serial Port Communication Properties

Property
Name Description

BaudRate Specify the rate at which bits are transmitted.

DataBits Specify the number of data bits to transmit.

Parity Specify the type of parity checking.

StopBits Specify the number of bits used to indicate the end of a
byte.

Terminator Specify the terminator character.

Note If the serial port object and the instrument communication settings are
not identical, you cannot successfully read or write data.

Refer to your instrument documentation for an explanation of its supported
communication settings.

You can display the communication property values for the serial port object s
created in “Creating a Serial Port Object” on page 6-15 with the get function.

get(s,{'BaudRate','DataBits','Parity','StopBits','Terminator'})
ans =
[9600] [8] 'none' [1] 'LF'

6-17

6 Controlling Instruments Using the Serial Port

Writing and Reading Data
This section describes interface-specific issues related to writing and reading
data with a serial port object. Topics include

• Asynchronous write and read operations

• Rules for completing write and read operations

• An example that illustrates writing and reading text data

For a general overview about writing and reading data, as well as a list of
all associated functions and properties, refer to “Communicating with Your
Instrument” on page 2-8.

Asynchronous Write and Read Operations
Asynchronous write and read operations do not block access to the MATLAB
command line. Additionally, while an asynchronous operation is in progress
you can

• Execute a read (write) operation while an asynchronous write (read)
operation is in progress. This is because serial ports have separate pins for
reading and writing.

• Make use of all supported callback properties. Refer to “Events and
Callbacks” on page 6-23 for more information about the callback properties
supported by serial port objects.

The process of writing data asynchronously is given in “Synchronous Versus
Asynchronous Write Operations” on page 3-17.

Asynchronous Read Operations
For serial port objects, you specify whether read operations are synchronous
or asynchronous with the ReadAsyncMode property. You can configure
ReadAsyncMode to continuous or manual.

If ReadAsyncMode is continuous (the default value), the serial port object
continuously queries the instrument to determine if data is available to be
read. If data is available, it is asynchronously stored in the input buffer.

6-18

Writing and Reading Data

To transfer the data from the input buffer to MATLAB, you use one of the
synchronous (blocking) read functions such as fgetl, fgets, fscanf, or fread.
If data is available in the input buffer, these functions will return quickly.

s = serial('COM1');
fopen(s)
s.ReadAsyncMode = 'continuous';
fprintf(s,'*IDN?')
s.BytesAvailable
ans =

56
out = fscanf(s);

If ReadAsyncMode is manual, the serial port object does not continuously query
the instrument to determine if data is available to be read. To read data
asynchronously, you use the readasync function. You then use one of the
synchronous read functions to transfer data from the input buffer to MATLAB.

s.ReadAsyncMode = 'manual';
fprintf(s,'*IDN?')
s.BytesAvailable
ans =

0
readasync(s)
s.BytesAvailable
ans =

56
out = fscanf(s);

Rules for Completing Write and Read Operations
The rules for completing synchronous and asynchronous read and write
operations are described below.

Completing Write Operations
A write operation using fprintf or fwrite completes when one of these
conditions is satisfied:

• The specified data is written.

• The time specified by the Timeout property passes.

6-19

6 Controlling Instruments Using the Serial Port

In addition to these rules, you can stop an asynchronous write operation at
any time with the stopasync function.

A text command is processed by the instrument only when it receives the
required terminator. For serial port objects, each occurrence of \n in the
ASCII command is replaced with the Terminator property value. Because the
default format for fprintf is %s\n, all commands written to the instrument
will end with the Terminator value. The default value of Terminator is
the line feed character. The terminator required by your instrument will
be described in its documentation.

Completing Read Operations
A read operation with fgetl, fgets, fscanf, or readasync completes when
one of these conditions is satisfied:

• The terminator specified by the Terminator property is read.

• The time specified by the Timeout property passes.

• The input buffer is filled.

• The specified number of values is read (fscanf and readasync only).

A read operation with fread completes when one of these conditions is
satisfied:

• The time specified by the Timeout property passes.

• The specified number of values is read.

In addition to these rules, you can stop an asynchronous read operation at
any time with the stopasync function.

Example: Writing and Reading Text Data
This example illustrates how to communicate with a serial port instrument by
writing and reading text data.

The instrument is a Tektronix TDS 210 two-channel oscilloscope connected
to the serial port COM1. Therefore, many of the commands given below
are specific to this instrument. A sine wave is input into channel 2 of the

6-20

Writing and Reading Data

oscilloscope, and your job is to measure the peak-to-peak voltage of the input
signal.

1 Create a serial port object — Create the serial port object s associated
with serial port COM1.

s = serial('COM1');

2 Connect to the instrument — Connect s to the oscilloscope. Because
the default value for the ReadAsyncMode property is continuous, data is
asynchronously returned to the input buffer as soon as it is available from
the instrument.

fopen(s)

3 Write and read data — Write the *IDN? command to the instrument
using fprintf, and then read back the result of the command using fscanf.

fprintf(s,'*IDN?')
s.BytesAvailable
ans =

56
idn = fscanf(s)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

You need to determine the measurement source. Possible measurement
sources include channel 1 and channel 2 of the oscilloscope.

fprintf(s,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(s)
source =
CH1

6-21

6 Controlling Instruments Using the Serial Port

The scope is configured to return a measurement from channel 1. Because
the input signal is connected to channel 2, you must configure the
instrument to return a measurement from this channel.

fprintf(s,'MEASUREMENT:IMMED:SOURCE CH2')
fprintf(s,'MEASUREMENT:IMMED:SOURCE?')
source = fscanf(s)
source =
CH2

You can now configure the scope to return the peak-to-peak voltage, and
then request the value of this measurement.

fprintf(s,'MEASUREMENT:MEAS1:TYPE PK2PK')
fprintf(s,'MEASUREMENT:MEAS1:VALUE?')

Transfer data from the input buffer to MATLAB using fscanf.

ptop = fscanf(s)
ptop =
2.0199999809E0

4 Disconnect and clean up — When you no longer need s, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(s)
delete(s)
clear s

6-22

Events and Callbacks

Events and Callbacks
This section describes interface-specific issues related to using events and
callbacks with a serial port object. Topics include

• Event types and callback properties

• Storing event information

• An example that uses the bytes-available event, the output-empty event,
and the instrcallback function

For a general overview of events and callbacks, including how to create and
execute callback functions, refer to “Events and Callbacks” on page 4-29.

Event Types and Callback Properties
The event types and associated callback properties supported by serial port
objects are listed below.

Serial Port Event Types and Callback Properties

Event Type Associated Properties

Break interrupt BreakInterruptFcn

BytesAvailableFcn

BytesAvailableFcnCount

Bytes available

BytesAvailableFcnMode

Error ErrorFcn

Output empty OutputEmptyFcn

Pin status PinStatusFcn

TimerFcnTimer

TimerPeriod

The break-interrupt and pin-status events are described below. For a
description of the other event types, refer to “Event Types and Callback
Properties” on page 4-30.

6-23

6 Controlling Instruments Using the Serial Port

Break-Interrupt Event
A break-interrupt event is generated immediately after a break interrupt is
generated by the serial port. The serial port generates a break interrupt when
the received data has been in an inactive state longer than the transmission
time for one character.

This event executes the callback function specified for the BreakInterruptFcn
property. It can be generated for both synchronous and asynchronous read
and write operations.

Pin-Status Event
A pin-status event is generated immediately after the state (pin value)
changes for the CD, CTS, DSR, or RI pins. Refer to “Serial Port Signals and
Pin Assignments” on page 6-4 for a description of these pins.

This event executes the callback function specified for the PinStatusFcn
property. It can be generated for both synchronous and asynchronous read
and write operations.

Storing Event Information
You can store event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The
Type field contains the event type, while the Data field contains event-specific
information. As described in “Creating and Executing Callback Functions” on
page 4-32, these two fields are associated with a structure that you define in
the callback function header. Refer to “Debugging: Recording Information to
Disk” on page 12-6 to learn about storing event information in a record file.

The event types and the values for the Type and Data fields are given below.

6-24

Events and Callbacks

Serial Port Event Information

Event Type Field Field Value

Type BreakInterruptBreak interrupt

Data.AbsTime day-month-year
hour:minute:second

Type BytesAvailableBytes available

Data.AbsTime day-month-year
hour:minute:second

Type Error

Data.AbsTime day-month-year
hour:minute:second

Error

Data.Message An error string

Type OutputEmptyOutput empty

Data.AbsTime day-month-year
hour:minute:second

Type PinStatus

Data.AbsTime day-month-year
hour:minute:second

Data.Pin CarrierDetect,
ClearToSend,
DataSetReady, or
RingIndicator

Pin status

Data.PinValue on or off

Type TimerTimer

Data.AbsTime day-month-year
hour:minute:second

The Data field values are described below.

6-25

6 Controlling Instruments Using the Serial Port

The AbsTime Field
AbsTime is defined for all events, and indicates the absolute time the event
occurred. The absolute time is returned using the MATLAB clock format.

day-month-year hour:minute:second

The Pin Field
Pin is used by the pin status event to indicate if the CD, CTS, DSR, or RI
pins changed state. Refer to “Serial Port Signals and Pin Assignments” on
page 6-4 for a description of these pins.

The PinValue Field
PinValue is used by the pin status event to indicate the state of the CD, CTS,
DSR, or RI pins. Possible values are on or off.

The Message Field
Message is used by the error event to store the descriptive message that is
generated when an error occurs.

Example: Using Events and Callbacks
This example uses the M-file callback function instrcallback to display
event-related information to the command line when a bytes-available event
or an output-empty event occurs:

1 Create an instrument object — Create the serial port object s associated
with serial port COM1.

s = serial('COM1');

2 Connect to the instrument — Connect s to the Tektronix TDS 210
oscilloscope. Because the default value for the ReadAsyncMode property is
continuous, data is asynchronously returned to the input buffer as soon as
it is available from the instrument.

fopen(s)

6-26

Events and Callbacks

3 Configure properties — Configure s to execute the callback function
instrcallback when a bytes-available event or an output-empty event
occurs.

s.BytesAvailableFcnMode = 'terminator';
s.BytesAvailableFcn = @instrcallback;
s.OutputEmptyFcn = @instrcallback;

4 Write and read data — Write the RS232? command asynchronously to
the oscilloscope. This command queries the RS-232 settings and returns
the baud rate, the software flow control setting, the hardware flow control
setting, the parity type, and the terminator.

fprintf(s,'RS232?','async')

instrcallback is called after the RS232? command is sent, and when the
terminator is read. The resulting displays are shown below.

OutputEmpty event occurred at 17:37:21 for the object:
Serial-COM1.

BytesAvailable event occurred at 17:37:21 for the object:
Serial-COM1.

Read the data from the input buffer.

out = fscanf(s)
out =
9600;0;0;NONE;LF

5 Disconnect and clean up — When you no longer need s, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(s)
delete(s)
clear s

6-27

6 Controlling Instruments Using the Serial Port

Using Control Pins
As described in “Serial Port Signals and Pin Assignments” on page 6-4, 9-pin
serial ports include six control pins. These control pins allow

• “Signaling the Presence of Connected Devices” on page 6-28

• “Controlling the Flow of Data: Handshaking” on page 6-31

The properties associated with the serial port control pins are given below.

Serial Port Control Pin Properties

Property Name Description

DataTerminalReady Specify the state of the DTR pin.

FlowControl Specify the data flow control method to use.

PinStatus Indicate the state of the CD, CTS, DSR, and RI pins.

RequestToSend Specify the state of the RTS pin.

Signaling the Presence of Connected Devices
DTEs and DCEs often use the CD, DSR, RI, and DTR pins to indicate whether
a connection is established between serial port devices. Once the connection is
established, you can begin to write or read data.

You can monitor the state of the CD, DSR, and RI pins with the PinStatus
property. You can specify or monitor the state of the DTR pin with the
DataTerminalReady property.

The following example illustrates how these pins are used when two modems
are connected to each other.

Example: Connecting Two Modems
This example connects two modems to each other via the same computer,
and illustrates how you can monitor the communication status for the
computer-modem connections, and for the modem-modem connection. The

6-28

Using Control Pins

first modem is connected to COM1, while the second modem is connected to
COM2:

1 Create the instrument objects — After the modems are powered on, the
serial port object s1 is created for the first modem, and the serial port
object s2 is created for the second modem.

s1 = serial('COM1');
s2 = serial('COM2');

2 Connect to the instruments — s1 and s2 are connected to the modems.
Because the default value for the ReadAsyncMode property is continuous,
data is asynchronously returned to the input buffers as soon as it is
available from the modems.

fopen(s1)
fopen(s2)

Because the default value of the DataTerminalReady property is on, the
computer (data terminal) is now ready to exchange data with the modems.
You can verify that the modems (data sets) are ready to communicate with
the computer by examining the value of the Data Set Ready pin using
thePinStatus property.

s1.Pinstatus
ans =

CarrierDetect: 'off'
ClearToSend: 'on'

DataSetReady: 'on'
RingIndicator: 'off'

The value of the DataSetReady field is on because both modems were
powered on before they were connected to the objects.

3 Configure properties — Both modems are configured for a baud rate of
2400 bits per second and a carriage return (CR) terminator.

s1.BaudRate = 2400;
s1.Terminator = 'CR';
s2.BaudRate = 2400;
s2.Terminator = 'CR';

6-29

6 Controlling Instruments Using the Serial Port

4 Write and read data — Write the atd command to the first modem. This
command puts the modem “off the hook,” which is equivalent to manually
lifting a phone receiver.

fprintf(s1,'atd')

Write the ata command to the second modem. This command puts the
modem in “answer mode,” which forces it to connect to the first modem.

fprintf(s2,'ata')

After the two modems negotiate their connection, you can verify the
connection status by examining the value of the Carrier Detect pin using
the PinStatus property.

s1.PinStatus
ans =

CarrierDetect: 'on'
ClearToSend: 'on'

DataSetReady: 'on'
RingIndicator: 'off'

You can also verify the modem-modem connection by reading the
descriptive message returned by the second modem.

s2.BytesAvailable
ans =

25
out = fread(s2,25);
char(out)'
ans =
ata
CONNECT 2400/NONE

Now break the connection between the two modems by configuring the
DataTerminalReady property to off. You can verify that the modems are
disconnected by examining the Carrier Detect pin value.

s1.DataTerminalReady = 'off';
s1.PinStatus
ans =

CarrierDetect: 'off'

6-30

Using Control Pins

ClearToSend: 'on'
DataSetReady: 'on'

RingIndicator: 'off'

5 Disconnect and clean up — Disconnect the objects from the modems,
and remove the objects from memory and from the MATLAB workspace.

fclose([s1 s2])
delete([s1 s2])
clear s1 s2

Controlling the Flow of Data: Handshaking
Data flow control or handshaking is a method used for communicating
between a DCE and a DTE to prevent data loss during transmission. For
example, suppose your computer can receive only a limited amount of data
before it must be processed. As this limit is reached, a handshaking signal
is transmitted to the DCE to stop sending data. When the computer can
accept more data, another handshaking signal is transmitted to the DCE to
resume sending data.

If supported by your device, you can control data flow using one of these
methods:

• “Hardware Handshaking” on page 6-32

• “Software Handshaking” on page 6-32

Note Although you might be able to configure your device for both hardware
handshaking and software handshaking at the same time, the Instrument
Control Toolbox does not support this behavior.

You can specify the data flow control method with the FlowControl property.
If FlowControl is hardware, then hardware handshaking is used to control
data flow. If FlowControl is software, then software handshaking is used to
control data flow. If FlowControl is none, then no handshaking is used.

6-31

6 Controlling Instruments Using the Serial Port

Hardware Handshaking
Hardware handshaking uses specific serial port pins to control data flow. In
most cases, these are the RTS and CTS pins. Hardware handshaking using
these pins is described in “The RTS and CTS Pins” on page 6-7.

If FlowControl is hardware, then the RTS and CTS pins are automatically
managed by the DTE and DCE. You can return the CTS pin value with the
PinStatus property. You can configure or return the RTS pin value with
the RequestToSend property.

Note Some devices also use the DTR and DSR pins for handshaking.
However, these pins are typically used to indicate that the system is ready
for communication, and are not used to control data transmission. For the
Instrument Control Toolbox, hardware handshaking always uses the RTS
and CTS pins.

If your device does not use hardware handshaking in the standard way, then
you might need to manually configure the RequestToSend property. In this
case, you should configure FlowControl to none. If FlowControl is hardware,
then the RequestToSend value that you specify might not be honored. Refer
to the device documentation to determine its specific pin behavior.

Software Handshaking
Software handshaking uses specific ASCII characters to control data flow.
These characters, known as Xon and Xoff (or XON and XOFF), are described
below.

Software Handshaking Characters

Character Integer Value Description

Xon 17 Resume data transmission.

Xoff 19 Pause data transmission.

When using software handshaking, the control characters are sent over the
transmission line the same way as regular data. Therefore you need only
the TD, RD, and GND pins.

6-32

Using Control Pins

The main disadvantage of software handshaking is that you cannot write
the Xon or Xoff characters while numerical data is being written to the
instrument. This is because numerical data might contain a 17 or 19, which
makes it impossible to distinguish between the control characters and the
data. However, you can write Xon or Xoff while data is being asynchronously
read from the instrument because you are using both the TD and RD pins.

Example: Using Software Handshaking. Suppose you want to use
software flow control in conjunction with your serial port application. To do
this, you must configure the instrument and the serial port object for software
flow control. For a serial port object s connected to a Tektronix TDS 210
oscilloscope, this configuration is accomplished with the following commands.

fprintf(s,'RS232:SOFTF ON')
s.FlowControl = 'software';

To pause data transfer, you write the numerical value 19 (Xoff) to the
instrument.

fwrite(s,19)

To resume data transfer, you write the numerical value 17 (Xon) to the
instrument.

fwrite(s,17)

6-33

6 Controlling Instruments Using the Serial Port

6-34

7

Controlling Instruments
Using TCP/IP and UDP

This chapter describes specific features related to controlling instruments
that use the TCP/IP or UDP protocols. The sections are as follows.

TCP/IP and UDP Overview (p. 7-2) A comparison between the TCP/IP
and UDP protocols.

Creating a TCPIP Object (p. 7-4) The TCPIP object establishes a
connection between MATLAB and
the remote host.

Creating a UDP Object (p. 7-10) The UDP object establishes a
connection between MATLAB and
the remote host.

Writing and Reading Data (p. 7-14) Interface-specific issues related to
writing and reading data with a
TCPIP or UDP object.

Events and Callbacks (p. 7-21) Enhance your instrument control
application using events and
callbacks.

7 Controlling Instruments Using TCP/IP and UDP

TCP/IP and UDP Overview
Transmission Control Protocol (TCP or TCP/IP) and User Datagram Protocol
(UDP or UDP/IP) are both transport protocols layered on top of the Internet
Protocol (IP). TCP/IP and UDP are compared below:

• Connection Versus Connectionless — TCP/IP is a connection-based
protocol, while UDP is a connectionless protocol. In TCP/IP, the two ends
of the communication link must be connected at all times during the
communication. An application using UDP prepares a packet and sends
it to the receiver’s address without first checking to see if the receiver is
ready to receive a packet. If the receiving end is not ready to receive a
packet, the packet is lost.

• Stream Versus Packet — TCP/IP is a stream-oriented protocol, while
UDP is a packet-oriented protocol. This means that TCP/IP is considered
to be a long stream of data that is transmitted from one end of the
connection to the other end, and another long stream of data flowing in
the opposite direction. The TCP/IP stack is responsible for breaking the
stream of data into packets and sending those packets while the stack
at the other end is responsible for reassembling the packets into a data
stream using information in the packet headers. UDP, on the other hand, is
a packet-oriented protocol where the application itself divides the data into
packets and sends them to the other end. The other end does not have to
reassemble the data into a stream. Note, some applications might present
the data as a stream when the underlying protocol is UDP. However, this is
the layering of an additional protocol on top of UDP, and it is not something
inherent in the UDP protocol itself.

• TCP/IP Is a Reliable Protocol, While UDP Is Unreliable — The
packets that are sent by TCP/IP contain a unique sequence number.
The starting sequence number is communicated to the other side at the
beginning of communication. The receiver acknowledges each packet, and
the acknowledgment contains the sequence number so that the sender
knows which packet was acknowledged. This implies that any packets lost
on the way can be retransmitted (the sender would know that they did not
reach their destination because it had not received an acknowledgment).
Also, packets that arrive out of sequence can be reassembled in the proper
order by the receiver.

7-2

TCP/IP and UDP Overview

Further, timeouts can be established because the sender knows (from the
first few packets) how long it takes on average for a packet to be sent and
its acknowledgment received. UDP, on the other hand, sends the packets
and does not keep track of them. Thus, if packets arrive out of sequence,
or are lost in transmission, the receiving end (or the sending end) has no
way of knowing.

Note that “unreliable” is used in the sense of “not guaranteed to succeed” as
opposed to “will fail a lot of the time.” In practice, UDP is quite reliable as long
as the receiving socket is active and is processing data as quickly as it arrives.

7-3

7 Controlling Instruments Using TCP/IP and UDP

Creating a TCPIP Object
You create a TCPIP object with the tcpip function. tcpip requires the name
of the remote host as an input argument. In most cases, you need to specify
the remote port value. If you do not specify the remote port, then 80 is used.
As described in “Configuring Properties During Object Creation” on page 3-2,
you can also configure property values during object creation.

Each TCPIP object is associated with one instrument. For example, to create
a TCPIP object for a Sony/Tektronix AWG520 Arbitrary Waveform Generator,

t = tcpip('sonytekawg.mathworks.com',4000);

Note that the port number is fixed and is found in the instrument’s
documentation.

The TCPIP object t now exists in the MATLAB workspace. You can display
the class of t with the whos command.

whos t
Name Size Bytes Class

t 1x1 640 tcpip object

Grand total is 16 elements using 640 bytes

Once the TCPIP object is created, the properties listed below are automatically
assigned values. These general purpose properties provide descriptive
information about the TCPIP object based on the object type, the remote host,
and the remote port.

7-4

Creating a TCPIP Object

TCPIP Descriptive Properties

Property Name Description

Name Specify a descriptive name for the TCPIP object.

RemoteHost Specify the remote host.

RemotePort Specify the remote host port for the connection.

Type Indicate the object type.

You can display the values of these properties for t with the get function.

get(t,{'Name','RemoteHost','RemotePort','Type'})
ans =

[1x31 char] [1x24 char] [4000] 'tcpip'

The TCPIP Object Display
The TCPIP object provides you with a convenient display that summarizes
important configuration and state information. You can invoke the display
summary these three ways:

• Type the TCPIP object variable name at the command line.

• Exclude the semicolon when creating a TCPIP object.

• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by
right-clicking an instrument object and selecting Display Summary from
the context menu.

The display summary for the TCPIP object t is given below.

TCPIP Object : TCPIP-sonytekawg.mathworks.com

Communication Settings
RemotePort: 4000
RemoteHost: sonytekawg.mathworks.com
Terminator: 'LF'

Communication State

7-5

7 Controlling Instruments Using TCP/IP and UDP

Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

Example: Communicating with a Remote Host
In this example, you read a page from the MathWorks Web site using a
TCPIP object:

1 Create and configure an instrument object — First you create a
TCPIP object in MATLAB. Port 80 is the standard port for Web servers.

t = tcpip('www.mathworks.com', 80);

By default, the TCPIP object has an InputBufferSize of 512, which means
it can only read 512 bytes at a time. The MathWorks Web page data is much
greater than 512 bytes, so you need to set a larger value for this property.

set(t, 'InputBufferSize', 30000);

2 Connect the object — Next, you open the connection to the server. If
the server is not present or is not accepting connections you would get
an error here.

fopen(t);

3 Write and read data — You can now communicate with the server using
the functions fprintf, fscanf, fwrite, and fread.

To ask a Web server to send a Web page, you use the GET command. You
can ask for the main Web page from www.mathworks.com using 'GET /'.

fprintf(t, 'GET /');

7-6

Creating a TCPIP Object

The server receives the command and sends back the Web page. You can
see if any data was sent back by looking at the BytesAvailable property
of the object.

get(t, 'BytesAvailable')

Now you can start to read the Web page data. By default, fscanf reads one
line at a time. You can read lines of data until the BytesAvailable value is
0. Note that you will not see a rendered web page; just the HTML file data
will scroll by on the screen.

while (get(t, 'BytesAvailable') > 0) A = fscanf(t)end

4 Disconnect and clean up — If you want to do more communication, you
can continue to read and write data here. If you are done with the object,
close it and delete it.

fclose(t);
delete(t);
clear t

Example: Server Drops the Connection
This example shows what happens when a TCPIP object loses its connection
with a remote server. The server is a Sony/Tektronix AWG520 Arbitrary
Waveform Generator (AWG). Its address is sonytekawg.mathworks.com
and its port is 4000. The AWG’s host IP address is 192.168.1.10 and is
user configurable in the instrument. The associated host name is given by
your network administrator. The port number is fixed and is found in the
instrument’s documentation.

The AWG can drop the connection because it is taken off line, it is powered
down, and so on:

1 Create an instrument object — Create a TCPIP object for the AWG.

t = tcpip('sonytekawg.mathworks.com', 4000);

2 Connect to the instrument — Connect to the remote instrument.

fopen(t)

7-7

7 Controlling Instruments Using TCP/IP and UDP

3 Write and read data — Write a command to the instrument and read
back the result.

fprintf(t,'*IDN?')
fscanf(t)
ans =
SONY/TEK,AWG520,0,SCPI:95.0 OS:2.0 USR:2.0

Assume that the server drops the connection. If you attempt to read from
the instrument, a timeout occurs and a warning is displayed.

fprintf(t,'*IDN?')
fscanf(t)

Warning: A timeout occurred before the Terminator was reached.
(Type "warning off instrument:fscanf:unsuccessfulRead" to
suppress this warning.)
ans =

''

At this point, the object and the instrument are still connected.

get(t,'Status')
ans =
open

If you attempt to write to the instrument again, an error message is
returned and the connection is automatically closed.

fprintf(t,'*IDN?')
??? Error using ==> fprintf
Connection closed by RemoteHost. Use FOPEN to connect to
RemoteHost.

Note that if the TCPIP object is connected to the local host, the warning
message is not displayed. Instead, the error message is displayed following
the next read operation after the connection is dropped.

7-8

Creating a TCPIP Object

4 Disconnect and clean up — When you no longer need t, you should
disconnect it from the host, and remove it from memory and from the
MATLAB workspace.

fclose(t)
delete(t)
clear t

7-9

7 Controlling Instruments Using TCP/IP and UDP

Creating a UDP Object
You create a UDP object with the udp function. udp does not require the name
of the remote host as an input argument. However, if you are using the
object to communicate with a specific instrument, you should specify the
remote host and the port number. As described in “Configuring Properties
During Object Creation” on page 3-2, you can also configure property values
during object creation.

For example, to create a UDP object associated with the remote host 127.0.0.1
and the remote port 4012,

u = udp('127.0.0.1',4012);

The UDP object u now exists in the MATLAB workspace. You can display the
class of u with the whos command.

whos u
Name Size Bytes Class

u 1x1 632 udp object

Grand total is 12 elements using 632 bytes

Once the UDP object is created, the properties listed below are automatically
assigned values. These general purpose properties provide descriptive
information about the UDP object based on the object type, the remote host,
and the remote port.

7-10

Creating a UDP Object

UDP Descriptive Properties

Property Name Description

Name Specify a descriptive name for the UDP object.

RemoteHost Specify the remote host.

RemotePort Specify the remote host port for the connection.

Type Indicate the object type.

You can display the values of these properties for t with the get function.

get(u,{'Name','RemoteHost','RemotePort','Type'})
ans =

'UDP-127.0.0.1' '127.0.0.1' [4012] 'udp'

The UDP Object Display
The UDP object provides you with a convenient display that summarizes
important configuration and state information. You can invoke the display
summary these three ways:

• Type the UDP object variable name at the command line.

• Exclude the semicolon when creating a UDP object.

• Exclude the semicolon when configuring properties using the dot notation.

You can also display summary information via the Workspace browser by
right-clicking an instrument object and selecting Display Summary from
the context menu.

The display summary for the UDP object u is given below.

UDP Object : UDP-127.0.0.1

Communication Settings
RemotePort: 4012
RemoteHost: 127.0.0.1
Terminator: 'LF'

Communication State

7-11

7 Controlling Instruments Using TCP/IP and UDP

Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

Example: Communicating Between Two Hosts
This example illustrates how you can use UDP objects to communicate
between two dedicated hosts. In this example, you know the names of both
hosts and the ports they use for communication with each other. One host
has the name doejohn.dhpc, using local port 8844; and the other host is
doetom.dhpc, using local port 8866. Note that each host regards the other
host’s port as the RemotePort:

1 Create interface objects — Create a UDP object on each host, referencing
the other as the remote host.

On host doejohn.dhpc, create u1. The object constructor specifies the name
of the remote host, the remote port on that other host, and the local port to
use on the machine where this object is created:

u1 = udp('doetom.dhpc', 'RemotePort', 8866, 'LocalPort', 8844)

On host doetom.dhpc, create u2:

u2 = udp('doejohn.dhpc', 'RemotePort', 8844, 'LocalPort', 8866)

2 Connect the objects — Open both UDP objects, so that each can
communicate with the other host.

On host doejohn.dhpc, open u1:

fopen(u1)

On host doetom.dhpc, open u2:

fopen(u2)

7-12

Creating a UDP Object

3 Write and read data — Communication between the two hosts is now a
matter of sending and receiving data. Write a message from doejohn.dhpc
to doetom.dhpc.

On host doejohn.dhpc, write data to the remote host via u1:

fprintf(u1, 'Ready for data transfer.')

On host doetom.dhpc, read data coming in from the remote host via u2:

fscanf(u2)
ans =
Ready for data transfer.

4 Disconnect and clean up — When you no longer need u1 on host
doejohn.dhpc, you should disconnect it and remove it from memory and
from the MATLAB workspace.

fclose(u1)
delete(u1)
clear u1

When u2 is no longer needed, perform a similar cleanup on the host
doetom.dhpc.

fclose(u2)
delete(u2)
clear u2

7-13

7 Controlling Instruments Using TCP/IP and UDP

Writing and Reading Data
This section describes interface-specific issues related to writing and reading
data with TCPIP and UDP objects. Topics include

• “Rules for Completing Write and Read Operations” on page 7-14

• “Example: Writing and Reading Data with a TCPIP Object” on page 7-15

• “Example: Writing and Reading Data with a UDP Object” on page 7-18

For a general overview about writing and reading data, as well as a list of
all associated functions and properties, refer to “Communicating with Your
Instrument” on page 2-8.

Rules for Completing Write and Read Operations
The rules for completing synchronous and asynchronous read and write
operations are described below.

Completing Write Operations
A write operation using fprintf or fwrite completes when one of these
conditions is satisfied:

• The specified data is written.

• The time specified by the Timeout property passes.

In addition to these rules, you can stop an asynchronous write operation at
any time with the stopasync function.

A text command is processed by the instrument only when it receives the
required terminator. For TCPIP and UDP objects, each occurrence of \n in the
ASCII command is replaced with the Terminator property value. Because the
default format for fprintf is %s\n, all commands written to the instrument
will end with the Terminator value. The default value of Terminator is
the line feed character. The terminator required by your instrument will
be described in its documentation.

7-14

Writing and Reading Data

Completing Read Operations
A read operation with fgetl, fgets, fscanf, or readasync completes when
one of these conditions is satisfied:

• The terminator specified by the Terminator property is read. For UDP
objects, DatagramTerminateMode must be off.

• The time specified by the Timeout property passes.

• The input buffer is filled.

• The specified number of values is read (fscanf and readasync only). For
UDP objects, DatagramTerminateMode must be off.

• A datagram is received (for UDP objects, only when
DatagramTerminateMode is on).

A read operation with fread completes when one of these conditions is
satisfied:

• The time specified by the Timeout property passes.

• The input buffer is filled.

• The specified number of values is read. For UDP objects,
DatagramTerminateMode must be off.

• A datagram is received (for UDP objects, only when
DatagramTerminateMode is on).

In addition to these rules, you can stop an asynchronous read operation at
any time with the stopasync function.

Example: Writing and Reading Data with a TCPIP
Object
This example illustrates how to use text and binary read and write operations
with a TCPIP object connected to a remote instrument. In this example,
you create a vector of waveform data in MATLAB, upload the data to the
instrument, and then read back the waveform.

The instrument is a Sony/Tektronix AWG520 Arbitrary Waveform Generator
(AWG). Its address is sonytekawg.mathworks.com and its port is 4000.

7-15

7 Controlling Instruments Using TCP/IP and UDP

The AWG’s host IP address is 192.168.1.10 and is user configurable in the
instrument. The associated host name is given by your network administrator.
The port number is fixed and is found in the instrument’s documentation:

1 Create an instrument object — Create a TCPIP object associated with
the AWG.

t = tcpip('sonytekawg.mathworks.com',4000);

2 Connect to the instrument — Before establishing a connection, the
OutputBufferSize must be large enough to hold the data being written.
In this example, 2577 bytes are written to the instrument. Therefore, the
OutputBufferSize is set to 3000.

set(t,'OutputBufferSize',3000)

You can now connect t to the instrument.

fopen(t)

3 Write and read data — Since the instrument’s byte order is little-endian,
configure the ByteOrder property to littleEndian.

set(t,'ByteOrder','littleEndian')

Create the sine wave data.

x = (0:499).*8*pi/500;
data = sin(x);
marker = zeros(length(data),1);
marker(1) = 3;

Instruct the instrument to write the file sin.wfm with Waveform File
format, a total length of 2544 bytes, and a combined data and marker
length of 2500 bytes.

fprintf(t,'%s',['MMEMORY:DATA "sin.wfm",#42544MAGIC 1000' 13 10])
fprintf(t,'%s','#42500')

7-16

Writing and Reading Data

Write the sine wave to the instrument.

for (i = 1:length(data)),
fwrite(t,data(i),'float32');
fwrite(t,marker(i));

end

Instruct the instrument to use a clock frequency of 100 MS/s for the
waveform.

fprintf(t,'%s',['CLOCK 1.0000000000e+008' 13 10 10])

Read the waveform stored in the function generator’s hard drive. The
waveform contains 2000 bytes plus markers, header, and clock information.
To store this data, close the connection and configure the input buffer to
hold 3000 bytes.

fclose(t)
set(t,'InputBufferSize',3000)

Reopen the connection to the instrument.

fopen(t)

Read the file sin.wfm from the function generator.

fprintf(t,'MMEMORY:DATA? "sin.wfm" ')
data = fread(t,t.BytesAvailable);

The next set of commands reads the same waveform as a float32 array. To
begin, write the waveform to the AWG.

fprintf(t,'MMEMORY:DATA? "sin.wfm" ')

Read the file header as ASCII characters.

header1 = fscanf(t)
header1 =
#42544MAGIC 1000

7-17

7 Controlling Instruments Using TCP/IP and UDP

Read the next six bytes, which specify the length of data.

header2 = fscanf(t,'%s',6)
header2 =
#42500

Read the waveform using float32 precision and read the markers using
uint8 precision. Note that one float32 value consists of four bytes.
Therefore, the following commands read 2500 bytes.

data = zeros(500,1);
marker = zeros(500,1);
for i = 1:500,
data(i) = fread(t,1,'float32');
marker(i) = fread(t,1,'uint8');

end

Read the remaining data, which consists of clock information and
termination characters.

clock = fscanf(t);
cleanup = fread(t,2);

4 Disconnect and clean up — When you no longer need t, you should
disconnect it from the host, and remove it from memory and from the
MATLAB workspace.

fclose(t)
delete(t)
clear t

Example: Writing and Reading Data with a UDP
Object
This example illustrates how to use text read and write operations with a
UDP object connected to a remote instrument.

The instrument used is an echo server on a Linux-based PC. An echo server is
a service available from the operating system that returns (echoes) received
data to the sender. The host name is daqlab11 and the port number is 7. The
host name is assigned by your network administrator.

7-18

Writing and Reading Data

1 Create an instrument object — Create a UDP object associated with
daqlab11.

u = udp('daqlab11',7);

2 Connect to the instrument — Connect u to the echo server.

fopen(u)

3 Write and read data — You use the fprintf function to write text data to
the instrument. For example, write the following string to the echo server.

fprintf(u,'Request Time')

UDP sends and receives data in blocks that are called datagrams. Each
time you write or read data with a UDP object, you are writing or reading
a datagram. For example, the string sent to the echo server constitutes a
datagram with 13 bytes — 12 ASCII bytes plus the line feed terminator.

You use the fscanf function to read text data from the echo server.

fscanf(u)
ans =
Request Time

The DatagramTerminateMode property indicates whether a read
operation terminates when a datagram is received. By default,
DatagramTerminateMode is on and a read operation terminates when a
datagram is received. To return multiple datagrams in one read operation,
set DatagramTerminateMode to off.

The following commands write two datagrams. Note that only the second
datagram sends the terminator character.

fprintf(u,'%s','Request Time')
fprintf(u,'%s\n','Request Time')

7-19

7 Controlling Instruments Using TCP/IP and UDP

Since DatagramTerminateMode is off, fscanf reads across datagram
boundaries until the terminator character is received.

set(u,'DatagramTerminateMode','off')
data = fscanf(u)
data =
Request TimeRequest Time

4 Disconnect and clean up — When you no longer need u, you should
disconnect it from the host, and remove it from memory and from the
MATLAB workspace.

fclose(u)
delete(u)
clear u

7-20

Events and Callbacks

Events and Callbacks
This section describes interface-specific issues related to using events and
callbacks with a TCPIP or UDP object. Topics include

• Event types and callback properties

• Storing event information

• An example that uses the datagram-received event and the instrcallback
function

For a general overview of events and callbacks, including how to create and
execute callback functions, refer to “Events and Callbacks” on page 4-29.

Event Types and Callback Properties
The event types and associated callback properties supported by TCPIP and
UDP objects are listed below.

TCPIP and UDP Event Types and Callback Properties

Event Type Associated Properties

BytesAvailableFcn

BytesAvailableFcnCount

Bytes available

BytesAvailableFcnMode

Datagram received DatagramReceivedFcn (UDP objects only)

Error ErrorFcn

Output empty OutputEmptyFcn

TimerFcnTimer

TimerPeriod

The datagram-received event is described below. For a description of the other
event types, refer to “Event Types and Callback Properties” on page 4-30.

7-21

7 Controlling Instruments Using TCP/IP and UDP

Datagram-Received Event
A datagram-received event is generated immediately after a complete
datagram is received in the input buffer.

This event executes the callback function specified for the
DatagramReceivedFcn property. It can be generated for both synchronous
and asynchronous read operations.

Storing Event Information
You can store event information in a callback function or in a record file. Event
information stored in a callback function uses two fields: Type and Data. The
Type field contains the event type, while the Data field contains event-specific
information. As described in “Creating and Executing Callback Functions” on
page 4-32, these two fields are associated with a structure that you define in
the callback function header. Refer to “Debugging: Recording Information to
Disk” on page 12-6 to learn about storing event information in a record file.

The event types and the values for the Type and Data fields are given below.

TCPIP and UDP Event Information

Event Type Field Field Value

Type BytesAvailableBytes available

Data.AbsTime day-month-year
hour:minute:second

Type DatagramReceived

Data.AbsTime day-month-year
hour:minute:second

Data.DatagramAddress IP address string

Data.DatagramLength Number of bytes received as
double

Datagram received

Data.DatagramPort Port number of sender as double

7-22

Events and Callbacks

TCPIP and UDP Event Information (Continued)

Event Type Field Field Value

Type Error

Data.AbsTime day-month-year
hour:minute:second

Error

Data.Message An error string

Type OutputEmptyOutput empty

Data.AbsTime day-month-year
hour:minute:second

Type TimerTimer

Data.AbsTime day-month-year
hour:minute:second

The Data field values are described below.

The AbsTime Field
AbsTime is defined for all events, and indicates the absolute time the event
occurred. The absolute time is returned using the MATLAB clock format.

day-month-year hour:minute:second

The DatagramAddress Field
DatagramAddress is the IP address of the datagram sender.

The DatagramLength Field
DatagramLength is the length of the datagram in bytes.

The DatagramPort Field
DatagramPort is the sender’s port number from which the datagram
originated.

7-23

7 Controlling Instruments Using TCP/IP and UDP

The Message Field
Message is used by the error event to store the descriptive message that is
generated when an error occurs.

Example: Using Events and Callbacks
This example extends “Example: Communicating Between Two Hosts” on
page 7-12 to include a datagram received callback. The callback function is
instrcallback, which displays information to the command line indicating
that a datagram has been received.

The following command configures the callback for the UDP object u2.

u2.DatagramReceivedFcn = @instrcallback;

When a datagram is received, the following message is displayed.

DatagramReceived event occurred at 10:26:20 for the object:
UDP-doetom.dhpc.
25 bytes were received from address 192.168.1.12, port 8844.

7-24

8

Using Device Objects

This chapter describes specific features and actions related to using device
objects. The sections are as follows.

Device Object Overview (p. 8-2) Basic features of device objects

Creating and Connecting Device
Objects (p. 8-5)

General procedure for the creation
and use of device objects

Communicating with Instruments
(p. 8-9)

Object-specific issues related to
configuring and exchanging data
through device objects

Device Groups (p. 8-14) Obtaining and using group device
properties

8 Using Device Objects

Device Object Overview
This section provides an overview of device objects in MATLAB.

Topics include

• “What Are Device Objects?” on page 8-2

• “Device Objects for MATLAB Instrument Drivers” on page 8-3

All instruments attached to your computer must communicate through
an interface. Popular interface protocols include GPIB, VISA, and RS-232
(serial). While Instrument Control interface objects allow you to communicate
with your equipment at a low (instrument command) level, the Instrument
Control Toolbox also allows you to communicate with your equipment without
detailed knowledge of how the hardware interface operates.

Programmable devices understand a specific language, sometimes referred to
as its command set. One common set is called SCPI (Standard Commands for
Programmable Instruments).

Device objects allow you to configure and query an instrument without
knowledge of its command set. This chapter covers the basic functionality of
device objects that use MATLAB instrument drivers.

If your application is straightforward, or if you are already familiar with
the topics mentioned above, you might want to begin with “Creating and
Connecting Device Objects” on page 8-5. If you want a high-level description
of all the steps you are likely to take when communicating with your
instrument, refer to Chapter 2, “The Instrument Control Session”.

What Are Device Objects?
Device objects are used to represent instruments in MATLAB. Properties and
methods specific to an instrument are encapsulated within device objects.
Device objects also free you from the specific underlying commands required
to communicate with your hardware.

8-2

Device Object Overview

You can use device objects at the MATLAB command prompt, inside
M-Functions, M-Scripts, and graphical user interface callbacks. The low-level
communication is performed through a MATLAB instrument driver.

����

���	�

���
�

������
	���

������
������

���	�

����������

������

���
������

������������
������

���������
������

��
�

 !
��

�"
��

�

#����$

�%�

��%��%

��%

!���"���
����������

���	�

Device Objects for MATLAB Instrument Drivers
There are three types of MATLAB instrument drivers:

• MATLAB interface instrument driver

• MATLAB IVI instrument driver

• MATLAB VXIplug&play instrument driver

Instrument Control Toolbox device objects support all these types of MATLAB
drivers, so that by using a device object, you can interface with any of these
drivers in the same way. However, each of these drivers interfaces differently
with the hardware. While MATLAB IVI and MATLAB VXIplug&play drivers
interface directly through standard drivers and the hardware port to the
instrument, the MATLAB interface driver requires an interface object to
communicate with the instrument.

8-3

8 Using Device Objects

The Instrument Control Toolbox supports the following interface objects:

• gpib

• serial

• tcpip

• udp

• visa

To learn how to create and use interface objects, see Chapter 3, “Using
Interface Objects”.

Note If you are using an interface object with a device object and a MATLAB
interface driver, you do not need to connect the interface object to the interface
using the fopen command. You need to connect the device object only.

Available MATLAB Instrument Drivers
Several drivers ship with the Instrument Control Toolbox. You can find these
drivers by looking in the directory

matlabroot\toolbox\instrument\instrument\drivers

where matlabroot is the MATLAB installation directory, as seen when you
type

matlabroot

at the MATLAB command prompt.

Many other drivers are available on the MathWorks Web site at

http://www.mathworks.com/matlabcentral/fileexchange

including drivers specifically for the Instrument Control Toolbox.

8-4

http://www.mathworks.com/matlabcentral/fileexchange

Creating and Connecting Device Objects

Creating and Connecting Device Objects
You create a device object with the icdevice command. For MATLAB
interface instrument drivers, the icdevice command requires the device
driver name and an interface object. As described in “Connecting to the
Instrument” on page 2-5, you can also configure property values during object
creation.

Device Objects for MATLAB Interface Drivers
Create a MATLAB device object to communicate with a Tektronix TDS
210 Oscilloscope. To communicate with the scope you will use a National
Instruments GBIB controller.

1 First create an interface object for the GPIB hardware. The following
command creates a GPIB object for a National Instruments GPIB board at
index 0 with an instrument at primary address 1.

g = gpib('ni',0,1);

2 Now that you have created the interface object, you can construct a device
object that uses it. The command to use is icdevice. You need to supply
the name of the instrument driver, tektronix_tds210, and the interface
object created for the GPIB controller, g.

d = icdevice('tektronix_tds210', g);

You can use the whos command to display the size and class of d.

whos d
Name Size Bytes Class

d 1x1 652 icdevice object

Grand total is 22 elements using 652 bytes

Device Object Properties
A device object has a set of base properties and a set of properties defined by
the driver. All device objects have the same base properties, regardless of the

8-5

8 Using Device Objects

driver being used. The driver properties are defined by the driver specified
in the icdevice constructor.

You can display the current values of all properties for d with the get
command.

get(d)

The Device Object Display
Device objects provide you with a convenient display that summarizes
important object information. You can invoke the display in these ways:

• Type the name of the device object at the command line.

• Exclude the semicolon when creating the device object.

• Exclude the semicolon when configuring properties using dot notation.

• Pass the object to the disp or display function.

The display summary for device object d is given below.

Instrument Device Object Using Driver : tektronix_tds210.mdd

Instrument Information
Type: Oscilloscope
Manufacturer: Tektronix
Model: TDS210

Driver Information
DriverType: MATLAB interface object
DriverName: tektronix_tds210.mdd
DriverVersion: 1.0

Communication State
Status: open

You can also display summary information via the Workspace browser by
right-clicking a device object and selecting Display Summary from the
context menu.

8-6

Creating and Connecting Device Objects

Device Objects for VXIplug&play and IVI Drivers

Creating the MATLAB Instrument Driver
The command-line function makemid creates a MATLAB instrument driver
from a VXIplug&play, IVI-C, or IVI-COM driver, saving the new driver in
a file on disk. The syntax is

makemid('driver','filename')

where driver is the original VXIplug&play, IVI-C, or IVI-COM driver name
(identified by instrhwinfo or the Test & Measurement Tool), and filename
is the file containing the newly created MATLAB instrument driver. See the
makemid reference page for a full description of the function and all its options.

You can open the new driver in the MATLAB Instrument Driver Editor, and
then modify and save it as required.

Creating the Device Object
After you create the MATLAB instrument driver by conversion, you create the
device object with the filename of the new driver as an argument for icdevice.

For example, if the driver is created from a VXIplug&play, IVI-C, or directly
from an IVI-COM driver,

obj = icdevice('ConvertedDriver.mdd','GPIB0::2::INSTR')

If the driver is created from an IVI-COM logical name,

obj = icdevice('ConvertedDriver.mdd')

Connecting the Device Object
Now that you have created the device object, you can connect it to the
instrument with the connect function. To connect the device object, d, created
in the last example, use the following command:

connect(d);

By default, the property settings are updated to reflect the current state of
the instrument. You can modify the instrument settings to reflect the device

8-7

8 Using Device Objects

object’s property values by passing an optional update parameter to connect.
The update parameter can be either object or instrument. To have the
instrument updated to the object’s property values, the connect function
from the previous example would be

connect(d, 'instrument');

If connect is successful, the device object’s status property is set to open;
otherwise it remains as closed. You can check the status of this property with
the get function or by looking at the object display.

get(d, 'status')

ans =

open

8-8

Communicating with Instruments

Communicating with Instruments
This section describes how to configure and communicate with instruments by
using device objects.

Topics include

• “Configuring Instrument Settings” on page 8-9

• “Calling Device Object Methods” on page 8-10

• “Control Commands” on page 8-12

Once a device object has been created and connected, it can be used as the
interface to an instrument. This chapter shows you how to access and
configure your instrument’s settings, as well as how to read and write data to
the instrument.

Configuring Instrument Settings
Every device object contains properties specific to the instrument it represents.
These properties are defined by the instrument driver used during device
object creation. For example, there may be properties for an oscilloscope that
allow you to adjust trigger parameters, or the contrast of the screen display.

Properties are assigned default values at device object creation. On execution
of connect the object is updated to reflect the state of the instrument or vice
versa, depending on the second argument given to connect.

You can obtain a full listing of configurable properties by calling the set
command and passing the device object.

Example: Configuring Settings on an Oscilloscope
This example illustrates how to configure an instrument using a device object.

The instrument used is a Tektronix TDS 210 two-channel oscilloscope. A
square wave is input into channel 1 of the oscilloscope. The task is to adjust
the scope’s settings so that triggering occurs on the falling edge of the signal:

8-9

8 Using Device Objects

1 Create the device object — Create a GPIB interface object, and then a
device object for a TDS 210 oscilloscope.

g = gpib('ni',0,1);
d = icdevice('tektronix_tds210', g);

2 Connect the device object — Use the connect function to connect the
device object to the instrument.

connect(d);

3 Check the current TriggerSlope settings — Use the get function to
obtain the current value for the oscilloscope TriggerSlope property.

get(d, 'TriggerSlope')

ans =

rising

The TriggerSlope is currently set to rising.

4 Change the TriggerSlope setting — If you want triggering to occur on
the falling edge, you need to modify that setting in the device object. This
can be accomplished with the set command.

set(d, 'TriggerSlope', 'falling');

This changes TriggerSlope to falling.

5 Disconnect and clean up — When you no longer need the device object,
disconnect it from the instrument and remove it from memory. Remove the
device object and interface object from the MATLAB workspace.

disconnect(d);
delete(d);
clear d g;

Calling Device Object Methods
Device objects contain methods specific to the instruments they
represent. Implementation details are hidden behind a single function.
Instrument-specific functions are defined in the MATLAB instrument driver.

8-10

Communicating with Instruments

The methods function displays all available driver-defined functions for the
device object. The display is divided into two sections:

• Generic object functions

• Driver-specific object functions

To view the available methods, type

methods(obj)

Use the instrhelp function to get help on the device object functions.

instrhelp(obj, methodname);

To call instrument-specific methods you use the invoke function. invoke
requires the device object and the name of the function. You must also provide
input arguments, when appropriate. The following example demonstrates
how to use invoke to obtain measurement data from an oscilloscope.

Example: Using Device Object Functions
This example illustrates how to call an instrument-specific device object
function. Your task is to obtain the frequency measurement of a waveform.
The instrument is a Tektronix TDS 210 two-channel oscilloscope.

The scope has been preconfigured with a square wave input into channel 1
of the oscilloscope. The hardware supports four different measurements:
frequency, mean, period, and peak-to-peak. The requested measurement is
signified with the use of an index variable from 1 to 4.

For demonstration purposes, the oscilloscope in this example has been
preconfigured with the correct measurement settings:

1 Create the device object — Create a GPIB interface object and a device
object for the oscilloscope.

g = gpib('ni',0,1);
d = icdevice('tektronix_tds210', g);

8-11

8 Using Device Objects

2 Connect the device object — Use the connect command to open the
GPIB object and update the settings in the device object.

connect(d);

3 Obtain the frequency measurement — Use the invoke command and
call measure. The measure function requires that an index parameter
be specified. The value of the index specifies which measurement the
oscilloscope should return. For the current setup of the Tektronix TDS 210
oscilloscope, an index of 1 indicates that frequency is to be measured.

invoke(d, 'measure', 1)

ans =

999.9609

The frequency returned is 999.96 Hz, or nearly 1 kHz.

4 Disconnect and clean up — You no longer need the device object so you
can disconnect it from the instrument. You should also delete it from
memory and remove it from the MATLAB workspace.

disconnect(d);
delete(d);
clear d g;

Control Commands
Control commands are special functions and properties that exist for all device
objects. You use control commands to identify an instrument, reset hardware
settings, perform diagnostic routines, and retrieve instrument errors. The
set of control commands consists of

• “InstrumentModel” on page 8-13

• “devicereset” on page 8-13

• “selftest” on page 8-13

• “geterror” on page 8-13

8-12

Communicating with Instruments

All control commands are defined within the MATLAB instrument driver
for your device.

InstrumentModel
InstrumentModel is a device object property. When queried, the instrument
identification command is sent to the instrument.

For example, for a Tektronix TDS 210 oscilloscope,

get(d, 'InstrumentModel')

ans =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v2.03 TDS2MM:MMV:v1.04

devicereset
To restore the factory settings on your instrument, use the devicereset
function. When devicereset is called, the appropriate reset instruction is
sent to your instrument.

The command accepts a connected device object and has no output arguments.

devicereset(obj);

selftest
This command requests that your instrument perform a self-diagnostic.
The actual operations performed and output arguments are specific to the
instrument your device object is connected to. selftest accepts a connected
device object as an input argument.

result = selftest(obj);

geterror
You can retrieve error messages generated by your instrument with the
geterror function. The returned messages are instrument specific. geterror
accepts a connected device object as an input argument.

msg = geterror(obj);

8-13

8 Using Device Objects

Device Groups
Device groups are used to group several related properties. For example, a
channel group might contain the input channels of an oscilloscope, and the
properties and methods specific to the input channels on the instrument.

MATLAB instrument drivers specify the type and quantity of device groups
for device objects.

Group objects can be accessed via the get command. For the Tektronix TDS
210 oscilloscope, there is a channel group that contains two group objects. The
device property to access a group is always the group name.

chans = get(d, 'Channel')

HwIndex: HwName: Type: Name:
1 CH1 scope-channel Channel1
2 CH2 scope-channel Channel2

To display the functions that a device group object supports, use the methods
function.

methods(chans(1))

You can also display a list of the group object’s properties and their current
settings with the get function.

get(chans(2))

To get help on a driver-specific property or function, use the instrhelp
function, with the name of the function or property.

instrhelp(chans(1),'Coupling')

Example: Using Device Groups to Access Instrument
Data
This example shows how to obtain waveform data from a Tektronix TDS
210 oscilloscope with a square wave signal input on channel 1. The methods
used are specific to this instrument:

8-14

Device Groups

1 Create and connect — First, create the device object for the oscilloscope
and then connect to the instrument.

g = gpib('ni',0,1);
d = icdevice('tektronix_tds210', g);
connect(d);

2 Get the device group — To retrieve waveform data, first gain access to
the channel group for the device object.

c = get(d, 'Channel');

This group is specific for the hardware you are using. The TDS 210
oscilloscope has two input channels; therefore the channel group contains
two channel group objects.

HwIndex: HwName: Type: Name:
1 CH1 scope-channel Channel1
2 CH2 scope-channel Channel2

3 Obtain the waveform — Now that you have access to the channel group
objects, you can call the getWaveform function to acquire the data. For this
example, channel 1 of the oscilloscope is reading the signal. To access this
channel, call getWaveform on the first object in the channel group array.

wave = invoke(c(1), 'getWaveform');

4 View the data — The wave variable now contains the waveform data from
the oscilloscope. Use the plot command to view the data.

plot(wave);

5 Disconnect and clean up — Once the task is done, disconnect the
hardware and free the memory used by the objects.

disconnect(d)
delete([d s])
clear d, s, c, wave;

8-15

8 Using Device Objects

8-16

9

Using VXIplug&play
Drivers

This chapter describes the use of VXIplug&play drivers for instrument
control. The sections are as follows.

Overview (p. 9-2) Standard VXIplug&play drivers and
the configurations required for them.

VXIplug&play Drivers (p. 9-3) Determining whether your system
is configured to use VXIplug&play
drivers, creating MATLAB
VXIplug&play instrument drivers,
and creating device objects.

9 Using VXIplug&play Drivers

Overview
The Instrument Control Toolbox can communicate with hardware using
VXIplug&play drivers. The instrument manufacturers are most often the
suppliers of these drivers.

For definitions and specifications of VXIplug&play drivers , see the Web site
of the VXIplug&play Systems Alliance at http://www.vxipnp.org.

VISA Setup
A system must have VISA installed in order for VXIplug&play drivers to
work. The driver installer software might specify certain VISA or other
connectivity requirements.

To determine whether your system is properly configured with the necessary
version of VISA, at the MATLAB prompt, type

instrhwinfo visa
ans =

InstalledAdaptors: {'agilent'}
JarFileVersion: 'Version 2.0 (R14)'

The cell array returned for InstalledAdaptors indicates which VISA
software is installed. A 1x0 cell array indicates that no VISA is installed.
Possible InstalledAdaptors values are agilent, tek, and ni.

If you do not have VISA installed, you need to install it. The software
installation disk provided with your instrument might include VISA along
with the instrument’s VXIplug&play driver, or you might be able to download
VISA from the instrument manufacturer’s Web site.

Other Software Requirements
An instrument driver can have other software requirements in addition to or
instead of VISA. Consult the driver documentation. The installer software
itself might specify these requirements.

9-2

http://www.vxipnp.org

VXIplug&play Drivers

VXIplug&play Drivers

Installation
The VXIplug&play driver particular to a piece of equipment is usually
provided by the equipment manufacturer as either an installation disk or as a
Web download. Once the driver is installed, you can determine whether the
configuration is visible to MATLAB by using the Test & Measurement Tool to
view the current driver installations. Open the tool with

tmtool

Expand the Instrument Drivers node, and click VXIplug&play Drivers.
Click the Scan button to update the display. All installed VXIplug&play
drivers will be listed.

Alternatively, you can use the MATLAB command-line function instrhwinfo
to find out which drivers are installed.

instrhwinfo ('vxipnp')
ans =

InstalledDrivers: {'tktds5k', 'ag3325b', 'hpe363xa'}
VXIPnPRootPath: 'C:\VXIPNP\WINNT'

The cell array returned for InstalledDrivers contains the names of all the
installed VXIplug&play drivers. The string returned for VXIPnPRootPath
indicates where the drivers are installed.

9-3

9 Using VXIplug&play Drivers

Creating a MATLAB VXIplug&play Instrument Driver
To use a VXIplug&play driver with a device object, you must have a MATLAB
VXIplug&play instrument driver based upon the information in the original
VXIplug&play driver. The MATLAB VXIplug&play instrument driver,
whether modified or not, acts as a wrapper to the VXIplug&play driver. You
can download or create the MATLAB instrument driver.

Downloading a Driver from the MathWorks Web Site
You might find an appropriate MATLAB driver wrapper for your instrument
on the MathWorks Web site, on the Supported Hardware page for the
Instrument Control Toolbox, at

http://www.mathworks.com/products/supportedio.html?prodCode=IC

On this page, click the Instrument Drivers link. You then have a choice to
go to the MATLAB Central File Exchange, where you can look for the
driver you need, or you can submit a request to the MathWorks for your
particular driver with the Instrument Driver Request Form.

To use the downloaded MATLAB VXIplug&play driver, you must also have
the instrument’s VXIplug&play driver installed. This driver is probably
available from the instrument manufacturer’s Web site.

Creating a Driver with makemid
The command-line function makemid creates a MATLAB VXIplug&play
instrument driver from a VXIplug&play driver, saving the new driver in a file
on disk. The syntax is

makemid('driver','filename')

where driver is the original VXIplug&play instrument driver name
(identified by instrhwinfo), and filename is the file containing the resulting
MATLAB instrument driver. See the makemid reference page for details on
this function.

If you need to customize the driver, open the new driver in the MATLAB
Instrument Driver Editor, modify it as required, and save it.

9-4

http://www.mathworks.com/products/supportedio.html?prodCode=IC

VXIplug&play Drivers

Note When you create a MATLAB instrument driver based on a
VXIplug&play driver, the original driver must remain installed on your
system for you to use the new MATLAB instrument driver.

Importing with the MATLAB Instrument Driver Editor (midedit)
The MATLAB Instrument Driver Editor can import a VXIplug&play driver,
thereby creating a MATLAB VXIplug&play instrument driver. You can
evaluate or set the driver’s functions and properties, and you can save the
modified MATLAB instrument driver for further use:

1 Open the MATLAB Instrument Driver Editor with midedit.

2 Click the File menu and select the Import menu item.

3 In the Import Driver dialog box, select the VXIplug&play driver that you
want to import and click Import.

The MATLAB Instrument Driver Editor loads the driver and displays the
components of the driver, as shown in the following figures.

MATLAB Instrument Driver Editor Showing tktds5k MATLAB Instrument
Driver Summary

9-5

9 Using VXIplug&play Drivers

tktds5k MATLAB Instrument Driver Display Group Functions

With the MATLAB Instrument Driver Editor, you can

• Create, delete, modify, and rename properties, functions, or groups

• Add M-code around instrument commands for analysis

• Add create, connect, and disconnect code

• Save the driver as a MATLAB VXIplug&play instrument driver

For more information, see Chapter 14, “The Instrument Driver Editor”

Note When you create a MATLAB instrument driver based on a
VXIplug&play driver, the original driver must remain installed on your
system for you to use the new MATLAB instrument driver.

Constructing Device Objects Using a MATLAB
VXIplug&play Instrument Driver
Once you have the MATLAB VXIplug&play instrument driver, you create the
device object with the filename of the driver and a VISA resource name as
arguments for icdevice. For example,

9-6

VXIplug&play Drivers

obj = icdevice('MATLABVXIpnpDriver.mdd','GPIB0::2::INSTR')
connect(obj)

See the icdevice reference page for full details on this function.

9-7

9 Using VXIplug&play Drivers

9-8

10

Using IVI Drivers

This chapter describes the use of IVI drivers for instrument control. The
sections are as follows.

Overview (p. 10-2) VISA or other requirements for your
system to use IVI drivers.

IVI Drivers (p. 10-4) Examine your IVI driver installation.
Create MATLAB IVI instrument
drivers. Create device objects for
MATLAB IVI instrument drivers.

IVI Configuration Store (p. 10-11) Examine and configure your IVI
configuration store.

10 Using IVI Drivers

Overview
The Instrument Control Toolbox can communicate with instruments using
Interchangeable Virtual Instrument (IVI) drivers. The toolbox supports both
IVI-C and IVI-COM drivers, provided by various instrument manufacturers.

For definitions and specifications of IVI drivers and their components, see the
Web site of the IVI Foundation at http://www.ivifoundation.org.

VISA Setup
Most IVI drivers require that VISA be installed on your system. The
driver installer software might specify certain VISA or other connectivity
requirements.

To determine whether your system is properly configured with the necessary
version of VISA, at the MATLAB prompt, type

instrhwinfo visa
ans =

InstalledAdaptors: {'agilent'}
JarFileVersion: 'Version 2.0 (R14)'

The cell array returned for InstalledAdaptors indicates which VISA
software is installed. A 1x0 cell array indicates that no VISA is installed.
Possible InstalledAdaptors values are agilent, tek, and ni.

If you need to install VISA, the software installation disk provided with your
instrument might include VISA along with the instrument’s IVI driver, or you
might be able to download VISA from the instrument manufacturer’s Web site.

An instrument driver can have other software requirements in addition to or
instead of VISA. Consult the driver documentation. The installer software
itself might specify these requirements.

IVI Shared Components
Many driver elements are common to a wide variety of instruments, so are not
contained in the driver itself. Instead, these elements are delivered as shared
components. Sharing components keeps the drivers themselves as small and

10-2

http://www.ivifoundation.org

Overview

interchangeable as possible. You can use instrhwinfo to determine whether
shared components are installed on your system; see “Installation” on page
10-4.

IVI Configuration Store Overview
An IVI configuration store is a configured arrangement of instrument drivers
and I/O port references. For an overview of IVI configuration stores and their
components, see “IVI Configuration Store” on page 10-11.

10-3

10 Using IVI Drivers

IVI Drivers
After your IVI driver is installed, you create a MATLAB IVI driver based on
the IVI driver. With the MATLAB IVI driver, you construct a device object,
which you use to communicate with your instrument.

IVI-C and IVI-COM
The Instrument Control Toolbox supports both IVI-C and IVI-COM
drivers, with class-compliant and instrument-specific functionality. IVI
class-compliant drivers are those that support common functionality across a
family of related instruments. Class-compliant drivers might be appropriate
if you want to use the basic functionality of an instrument, with the ability
to swap instruments without changing the code in your application. An IVI
instrument-specific driver or interface provides access to the instrument’s
unique functionality, and therefore generally does not accommodate
instrument substitution.

In the case of IVI-C drivers, you can use IVI-C class drivers and IVI-C specific
drivers. Device objects that are constructed to call IVI-C class drivers offer
interchangeability between similar instruments, and will work with all
instruments consistent with that class driver. Device objects constructed to
directly call IVI-C specific drivers generally offer less interchangeability, but
provide access to the unique methods and properties of a specific instrument.

Device objects that are constructed to use IVI-COM drivers might have access
to both class-compliant and instrument-specific functionality. Most IVI-COM
drivers contain instrument-specific properties and methods. Many also
contain properties and methods that comply with IVI class specifications.
This allows you to choose between interchangeability and instrument-specific
functionality with the same driver. An application that uses only the
class-compliant functionality of a driver works with all drivers that comply
with the same IVI class. Applications that employ instrument-specific
functionality might work only with that driver on that instrument.

Installation
The IVI driver particular to a piece of equipment is usually provided by the
equipment manufacturer, either on an installation disk or as a Web download.

10-4

IVI Drivers

Required VISA software and IVI shared components might also come with
the driver.

You can use the MATLAB command-line function instrhwinfo to find
information on installed IVI drivers and shared components.

instrhwinfo ('ivi')
ans =

LogicalNames: {'MainScope', 'FuncGen'}
ProgramIDs: {'TekScope.TekScope','Agilent33250'}

Modules: {'ag3325b', 'hpe363xa'}
ConfigurationServerVersion: '1.3.1.0'

MasterConfigurationStore: 'C:\Program Files\IVI\Data\
IviConfigurationStore.xml'

IVIRootPath: 'C:\Program Files\IVI\'

The LogicalNames are associated with particular IVI drivers, but they do not
necessarily imply that the drivers are currently installed. Drivers can be
installed that do not have a LogicalName property set yet, or drivers that had
LogicalName set might have been removed.

ConfigurationServerVersion, MasterConfigurationStore, and
IVIRootPath all convey information related to installed shared components.
The ConfigurationServerVersion indicates whether IVI shared components
are installed. If its value is an empty string, then no shared components
were found.

Alternatively, you can use the Test & Measurement Tool to view the
installation of IVI drivers and the setup of the IVI configuration store. Open
the Test & Measurement Tool with

tmtool

Expand the Instrument Drivers node and click IVI. Click the Software
Modules tab. (For information on the other IVI driver tabs and settings in
the Test & Measurement Tool, see “IVI Configuration Store” on page 10-11.)

10-5

10 Using IVI Drivers

MATLAB IVI Instrument Drivers
To use an IVI driver with a device object, you must have a MATLAB IVI
instrument driver based upon the information in the original IVI driver. The
MATLAB IVI instrument driver, whether modified or not, acts as a wrapper
to the IVI driver. You can download or create the MATLAB instrument driver.

Downloading a Driver from the MathWorks Web Site
You might find an appropriate MATLAB driver wrapper for your instrument
on the MathWorks Web site, on the Supported Hardware page for the
Instrument Control Toolbox, at

http://www.mathworks.com/products/supportedio.html?prodCode=IC

On this page, click the Instrument Drivers link. You then have a choice to
go to the MATLAB Central File Exchange, where you can look for the
driver you need, or you can submit a request to the MathWorks for your
particular driver with the Instrument Driver Request Form.

10-6

http://www.mathworks.com/products/supportedio.html?prodCode=IC

IVI Drivers

To use the downloaded MATLAB IVI driver, you must also have the
instrument’s IVI driver installed. This driver might be available from the
instrument manufacturer’s Web site.

Creating a Driver with makemid
The command-line function makemid creates a MATLAB IVI instrument
driver from an IVI driver, saving the new driver in a file on disk. The syntax is

makemid('driver','filename')

where driver is the original IVI driver name (identified by instrhwinfo
or the Test & Measurement Tool), and filename is the file containing the
conversion result. For driver you can use a Module (for IVI-C), a ProgramID
(for IVI-COM), or a LogicalName (for either IVI-C or IVI-COM). See the
makemid reference page for full details on this function.

If you need to customize the driver, open the new driver in the MATLAB
Instrument Driver Editor, modify it as required, and save it.

Note When you create a MATLAB instrument driver based on an IVI driver,
the original driver must remain installed on your system for you to use the
new MATLAB instrument driver.

Importing with the MATLAB Instrument Driver Editor (midedit)
The MATLAB Instrument Driver Editor can import an IVI driver, thereby
creating a MATLAB IVI instrument driver. You can evaluate or set the
driver’s functions and properties, and you can save the modified MATLAB
instrument driver for further use:

1 Open the MATLAB Instrument Driver Editor by typing midedit.

2 Click the File menu and select the Import menu item.

3 In the Import Driver dialog box, select the IVI driver that you want to
import, and click Import.

10-7

10 Using IVI Drivers

The MATLAB Instrument Driver Editor loads the driver and displays its
components, as shown in the following figure.

MATLAB Instrument Driver Editor Showing TekScope MATLAB Instrument
Driver Display Group Functions

With the MATLAB Instrument Driver Editor, you can

• Create, delete, modify, and rename properties, functions, or groups

• Add M-code around instrument commands for analysis

• Add create, connect, and disconnect code

• Save the driver as a MATLAB IVI instrument driver

For more information, see Chapter 14, “The Instrument Driver Editor”.

Note When you create a MATLAB instrument driver based on an IVI driver,
the original driver must remain installed on your system for you to use the
new MATLAB instrument driver.

10-8

IVI Drivers

Constructing Device Objects Using a MATLAB IVI
Instrument Driver
Once you have the MATLAB IVI instrument driver, you create the device
object with the filename of the MATLAB instrument driver as an argument
for icdevice. The following examples show the creation of MATLAB IVI
instrument drivers (all with .mdd extensions) and the construction of device
objects to use them.

See the icdevice and makemid reference pages for full details on these
functions.

In the following example, makemid uses a LogicalName to identify an IVI
driver, then creates a MATLAB IVI driver. Because LogicalName is associated
with a driver session and hardware asset, you do not need to pass a RsrcName
to icdevice when constructing the device object.

makemid('MainScope','MainScope.mdd')
obj = icdevice('MainScope.mdd')

In the next example, makemid uses a ProgramID to reference an IVI-COM
driver, then creates a MATLAB IVI instrument driver. The device object
requires a RsrcName in addition to the filename of the MATLAB IVI
instrument driver.

makemid('TekScope.TekScope','TekScopeML.mdd')
obj = icdevice('TekScopeML.mdd','GPIB0::13::INSTR')

In the next example, makemid uses a software Module to reference an
IVI-C driver, then creates a MATLAB IVI instrument driver. The device
object requires a RsrcName in addition to the filename of the MATLAB IVI
instrument driver.

makemid('ag3325b','Ag3325bML.mdd')
obj = icdevice('Ag3325bML.mdd','ASRL1::INSTR')

10-9

10 Using IVI Drivers

In the next example, makemid creates a MATLAB IVI instrument driver based
on the IVI-C class driver ivifgen. The device object uses the MATLAB IVI
instrument driver filename and the logical name of the driver from the IVI
configuration store.

makemid('ivifgen','FgenML.mdd')
obj = icdevice('FgenML.mdd','FuncGen')

10-10

IVI Configuration Store

IVI Configuration Store
This section describes the components of an IVI configuration store and how
to examine or configure the IVI configuration store from MATLAB.

By providing a way outside of the application to configure the relationship
between drivers and I/O interface references, an IVI configuration store
greatly enhances instrument interchangeability.

Suppose your application uses only a specified driver to communicate with one
type of instrument at a fixed location. If you change the instrument model,
instrument location, or driver, you would have to modify the application to
accommodate that change.

An IVI configuration store offers the ability to accommodate different
instrument models, drivers, or ports, without having to modify your
application. This is especially useful when using a compiled application that
you cannot easily modify.

Components
The components of the IVI configuration store identify the locations of the
instruments to communicate with, the software modules used to control the
instruments, and the associations of which software modules are used with
instruments at which locations.

�������	

���	

�������	
���	�

����	���	�����

������
���	

����������������������	

���
� �������

�������	��

Components of an IVI Configuration Store

Software Module
A software module is instrument-specific, and contains the commands and
functions necessary to communicate with the instrument. Software modules

10-11

10 Using IVI Drivers

are commonly provided by the instrument vendor, and they are not editable
from within MATLAB.

Hardware Asset
A hardware asset is an identification of a communication port to which
the instrument is connected. This component is configured with an
IOResourceDescriptor. Usually you have one hardware asset per connection
location (protocol type, bus address, etc.).

Driver Session
A driver session makes the association between a software module and a
hardware asset. Generally, you have a driver session for each instrument at
each of its possible locations.

Identical instruments connected at different locations can use the same
software module, but because they have different hardware assets, they
require different driver sessions.

Different kinds of instruments that are connected to the same location (at
different times) can use the same hardware asset, but because they have
different software modules, they require different driver sessions.

Logical Name
A logical name is a configuration store component that provides access to a
driver session. A logical name can be thought of as a configurable pointer to
a driver session. In a typical setup, the application communicates with an
instrument via a logical name. If the application needs to communicate with
a different instrument (for example, the same kind of scope at a different
location), only the logical name within the IVI configuration store needs to be
updated to point to the new driver session; there is no need to rewrite any
code in the application, because it uses the same logical name.

Configuring
You can use the Test & Measurement Tool to examine or configure your IVI
configuration store. Open the tool by typing

tmtool

10-12

IVI Configuration Store

Expand the Instrument Drivers node and click IVI.

You see a tab for each type of IVI configuration store element. This figure
shows the available driver sessions in the current IVI configuration
store. For the selected driver session, you can use any available software
module or hardware asset. This figure shows the configuration for the
driver session TekScope.DriverSession, which uses the software module
TekScope.Software and the hardware asset TekScope.Hardware.

Alternatively, you can use command-line functions to examine and configure
your IVI configuration store. To see what IVI configuration store elements are
available, use instrhwinfo to identify the existing logical names.

instrhwinfo('ivi')
ans =

LogicalNames: {'MainScope', 'FuncGen'}

10-13

10 Using IVI Drivers

ProgramIDs: {'TekScope.TekScope','Agilent33250'}
Modules: {'ag3325b', 'hpe363xa'}

ConfigurationServerVersion: '1.3.1.0'
MasterConfigurationStore: 'C:\Program Files\IVI\Data\

IviConfigurationStore.xml'
IVIRootPath: 'C:\Program Files\IVI\'

Use instrhwinfo with a logical name as an argument to see the details of
that logical name’s configuration.

instrhwinfo('ivi','MainScope')
ans =

DriverSession: 'TekScope.DriverSession'
HardwareAsset: 'TekScope.Hardware'

SoftwareModule: 'TekScope.Software'
IOResourceDescriptor: 'GPIB0::13::INSTR'

SupportedInstrumentModels: 'TekScope 5000, 6000 and 7000 series'
ModuleDescription: 'TekScope software module desc'

ModuleLocation: ''

The configuration of this example is shown below, used by the application
data_analyzer.m.

You create and configure elements in the IVI configuration store by using the
IVI configuration store object methods add, commit, remove, and update. For
further details, see the reference pages for these methods.

�������	

����������������������	

��������������
�����������
���

�
����	
� ��!
��
""���

�
����	
���#�$��

�
����	
�%���$��

!	"�����#
$%%%��	��	�
�������� 	

Basic IVI Configuration Store Example

The following figure shows an example of an IVI configuration store with
several interchangeable components. Application 1 requires access to the
oscilloscopes at two different locations (hardware asset X and hardware
asset Y). The scopes are similar, so they use the same software module S.

10-14

IVI Configuration Store

Because the scopes are at different locations (or perhaps it is the same scope
connected to two different locations at different times), each configuration
requires its own driver session, in this example, driver session A and driver
session B.

The code of application 1 is written to access logical name 1, which is
configured in the IVI configuration store to access driver session A or driver
session B (but not both at the same time). Because the selection of driver
session is performed in the IVI configuration store, there is no need to alter
the code of the application to change access from one scope to the other.

�������	

���	��

�������	
���	��&

�������	

���	��

�������	
���	��'

�������	

���	�(

�������	
���	��)

����	���	�������

����	���	������*

����	���	�������

������
���	�+

������
���	�,

����������������������	

���

���

���

� ��������+

� ��������,
�����

IVI Configuration Store with Several Interchangeable Elements

10-15

10 Using IVI Drivers

10-16

11

Using Generic Instrument
Drivers

This chapter describes the use of generic drivers for controlling instruments
from MATLAB with the Instrument Control Toolbox. The sections are as
follows.

Overview (p. 11-2) Introduces generic instrument
drivers.

Example — Writing a Generic Driver
(p. 11-3)

Illustrates how to write a generic
instrument driver with the MATLAB
Instrument Driver Editor.

Example — Using a Generic Driver
with the Test & Measurement Tool
(p. 11-9)

Illustrates how to use a generic
driver with the Test & Measurement
Tool GUI.

Example — Using a Generic Driver
at the Command Line (p. 11-13)

Illustrates how to use a generic
driver with MATLAB commands
that work at the command line or in
M-code.

11 Using Generic Instrument Drivers

Overview
Generic drivers allow the Instrument Control Toolbox to communicate with
devices or software that do not use industry-standard drivers or protocols.

Typical cases, but not the only possibilities, are instruments that offer access
through a COM interface (where the instrument can be accessed as an
ActiveX object from MATLAB), that use proprietary libraries, or that use
custom MEX-files.

Because the generic nature of this feature does not lend itself to detailed
discussion of specific instructions that work in all cases, the following sections
of this chapter use an example to illustrate how to create and use a MATLAB
generic instrument driver:

• “Example — Writing a Generic Driver” on page 11-3

• “Example — Using a Generic Driver with the Test & Measurement Tool”
on page 11-9

• “Example — Using a Generic Driver at the Command Line” on page 11-13

11-2

Example — Writing a Generic Driver

Example — Writing a Generic Driver
In this example, the generic “instrument” that you control is Microsoft
Internet Explorer (IE), which is represented by a COM object. (This example
works only on Windows systems.) Working through the example, you write
a simple MATLAB instrument generic driver that allows the Instrument
Control Toolbox to communicate with a COM object. Using both a graphical
interface and command-line code, with your driver you create an IE browser
window, control its size, and specify what Web page it displays. The principles
demonstrated in this example can be applied when writing a generic driver
for any kind of instrument.

The steps to create a driver are described in the following sections:

• “Creating the Driver and Defining Its Initialization Behavior” on page 11-3

• “Defining Properties” on page 11-5

• “Defining Functions” on page 11-8

Creating the Driver and Defining Its Initialization
Behavior
In this section, you create a new driver and specify what happens when an
object is created for this driver.

1 Open the MATLAB Instrument Driver Editor from the MATLAB command
line.

midedit

2 To make it known that this driver is a generic driver, in the MATLAB
Instrument Driver Editor, click File > New > Generic driver, as shown
in the following figure.

11-3

11 Using Generic Instrument Drivers

3 Select File > Save as.

Navigate to the directory where you want to save your driver, and give
it any name you want. This example uses the name ie_drv. Remember
where you have saved your driver.

4 Select the Summary node in the driver editor window. Set the fields of this
pane with any values you want. This example uses the following settings:

Manufacturer Microsoft

Supported models IE

Instrument type Browser

Driver version 1.0

5 Select the node Initialization and Cleanup.

6 Click the Create tab.

This is where you define the M-code to execute when this driver is used to
create a device object. This example identifies the COM object for Internet
Explorer, and assigns the handle to that object as the Interface property
of the device object being created.

7 Add the following lines of code to the Create tab.

ie = actxserver('internetexplorer.application');
set(obj, 'Interface', ie);

8 Click the Connect tab.

This is where you define the M-code to execute when you connect your
device object to your instrument or software.

9 Add the following lines of code to the Connect tab.

ie = get(obj, 'Interface');
set(ie, 'Visible', 1);
set(ie, 'FullScreen', 0);

11-4

Example — Writing a Generic Driver

The first line gets ie as a handle to the COM object, based on the assignment
in the Create code. The two lines after that set the window visibility and size.

Defining Properties
Writing properties for generic drivers in the MATLAB Instrument Driver
Editor is a matter of writing straight M-code.

In this example, you define two properties. The first property uses the same
name as the corresponding property of the COM object; the second property
uses a different name from its corresponding COM object property.

Using the Same Name for a Property
The position of the IE browser window is determined by the Top and Left
properties of its COM object. In the following steps, you make the Top
property available to your device object through your generic driver. For this
property, the name of the property is the same in both the COM object and
in your device object.

1 Select the Properties node in the driver editor tree.

2 In the Add property field, enter the text Top, and click Add.

3 Expand the Properties node in the tree, and select the new node Top.

4 Click the Property Values tab. Your property can have a numeric value
corresponding to screen pixels. For the sake of example, you can limit the
value of the property from 0 to 200.

5 Make sure the Data Type field indicates Double. In the Constraint field,
click the pull-down menu and select Bounded.

6 Keep the Minimum value of 0.0, and enter a Maximum value of 200.

Your driver editor window should look like the following figure.

11-5

11 Using Generic Instrument Drivers

Now that you have defined the data type and acceptable values of the
property, you can write the code to be executed whenever the device object
property is accessed by get or set.

7 Click the Code tab.

The concept of reading the property is rather straightforward. When you
get the Top property of the device object, the driver merely gets the value of
the COM object’s corresponding Top property. So all you need in the Get
code function is to identify the COM object to get the information from.

8 Add the following code at the bottom of the function in the Get code pane.

ie = get(obj, 'Interface');
propertyValue = get(ie, PropertyName);

The first line gets ie as a handle to the COM object. Remember that the
Interface property of the device object is set to this value back in the
driver’s Create code. The second line retrieves the value of the COM
object’s Top property, and assigns it to propertyValue, which is returned to
the get function for the device object.

11-6

Example — Writing a Generic Driver

9 Add the following code at the bottom of the function in the Set code pane:

ie = get(obj, 'Interface');
set(ie, propertyName, propertyValue);

Using a Different Name for a Property
In the steps above, you created in your driver a device object property that
has the same name as the property of the COM object representing your
instrument. You can also create properties with names that do not match
those of the COM object properties. In the following steps, you create a
property called Vsize that corresponds to the IE COM object property Height.

1 Select the Properties node in the driver editor tree.

2 In the Add property field, enter the text Vsize, and click Add.

3 Expand the Properties node in the tree, and select the new node Vsize.

4 Click the Property Values tab. This property can have a numeric value
corresponding to screen pixels, whose range you define as 200 to 800.

5 Make sure the Data Type field indicates Double. In the Constraint field,
click the pull-down menu and select Bounded.

6 Enter a Minimum value of 200, and enter a Maximum value of 800.

7 Click the Code tab.

8 Add the following code at the bottom of the function in the Get code pane:

ie = get(obj,'Interface');
propertyValue = get(ie,'Height');

9 Add the following code at the bottom of the function in the Set code pane:

ie = get(obj, 'Interface');
set(ie, 'Height', propertyValue);

10 Save your driver.

11-7

11 Using Generic Instrument Drivers

Defining Functions
A common function for Internet Explorer is to download a Web page. In the
following steps, you create a function called goTo that allows you to navigate
the Web with the browser.

1 Select the Functions node in the driver editor tree.

2 In the Add property field, enter the text goTo, and click Add.

3 Expand the Functions node in the tree, and select the new node goTo.

Writing functions for generic drivers in the MATLAB Instrument Driver
Editor is a matter of writing straight M-code.

Your goTo function requires only one input argument: the URL of the Web
page to navigate to. You can call that argument site.

4 Change the first line of the MATLAB code pane to read

function goTo(obj, site)

The variable obj is the device object using this driver. The value of site
is a string passed into this function when you are using this driver. Your
function then must pass the value of site on to the IE COM object. So your
function must create a handle to the COM object, then call the IE COM
method Navigate2, passing to it the value of site.

5 Add the following code at the bottom of the function in the MATLAB code
pane.

ie = get(obj, 'Interface');
invoke(ie, 'Navigate2', site);

6 Save your driver, and close the MATLAB Instrument Driver Editor.

Now that your generic driver is ready, you can use it with the Test &
Measurement Tool (tmtool) or at the MATLAB command line.

11-8

Example — Using a Generic Driver with the Test & Measurement Tool

Example — Using a Generic Driver with the Test &
Measurement Tool

With the Test & Measurement Tool you can scan for your driver, create a
device object that uses that driver, set and get properties of the object, and
execute functions.

The steps you take to use a driver with the Test & Measurement Tool are
illustrated in the following sections:

• “Creating and Connecting the Device Object” on page 11-9

• “Accessing Properties” on page 11-10

• “Using Functions” on page 11-11

Creating and Connecting the Device Object
This example illustrates how to use the generic driver you created in
“Example — Writing a Generic Driver” on page 11-3.

1 In the MATLAB Command Window, make sure that the directory
containing your driver is on the MATLAB path.

path

If you do not see the directory in the path listing, add the directory to the
path with the command

addpath <directory>

where <directory> is the pathname to the directory containing your driver.

2 Open the Test & Measurement Tool.

tmtool

3 In the Test & Measurement Tool tree, expand the Instrument Drivers
node.

4 Select the MATLAB Instrument Drivers node.

11-9

11 Using Generic Instrument Drivers

5 Your driver might not be listed yet, so click Scan in the lower-right corner of
the tool. If the tool found your driver, it is listed in the tree as ie_drv.mdd.

6 Select the ie_drv.mdd node in the tree.

7 Right-click the ie_drv.mdd node in the tree, and select Create Device
Object Using Driver. The following dialog box appears.

8 Check the box to Select the created device object in the tree on
dialog close, as shown. The device object in this example does not need a
resource, so keep that field empty.

9 Click OK.

When the Test & Measurement Tool creates the device object, an entry
for the object appears as a node in the tree. The Browser-ie_drv node
should already be selected in the tree. This refers to the device object you
just created.

10 Click Connect in the upper-right corner of the Test & Measurement
Tool. This establishes a communication channel between the tool and the
IE browser window, and an empty IE window appears on your screen.
Remember that the Create code for your driver creates an object for the IE
browser, and the Connect code and makes its window visible.

Accessing Properties
The driver you created allows you to specify where the browser window
appears on your screen and how large it is.

11-10

Example — Using a Generic Driver with the Test & Measurement Tool

1 Click the Properties tab, and then select Top in the Device object
properties list.

The first value displayed for setting this property is 0.0.

2 Click Set. The IE browser window shifts upward to the top edge of your
screen.

3 With the mouse, grab the IE window, and drag it down some distance from
the top of the screen.

4 Now return to the Test & Measurement Tool window, and click Get for
the Top property. Notice in the Response pane how many pixels down
you have moved the window.

Use your driver Vsize property to change the size of the browser window.

1 Select Vsize in the Device object properties list.

2 Enter a property value of 200, and click Set. Notice the IE window size.

3 Enter a property value of 400 and click Set. Notice the IE window size.

4 Try resizing the IE browser window directly with the mouse. Then in the
Test & Measurement Tool, click Get for the Vsize property. Notice the
value returned to the Response pane.

Using Functions
Use the goTo function of your generic driver to control the Web page that
the browser displays.

1 In the Test & Measurement Tool, click the Functions tab for your device
object.

2 Select goTo in the list of Device object functions.

3 In the Input argument(s) field, enter 'www.mathworks.com'. Be sure
to include the single quotes.

4 Click Execute. Observe the IE browser and see that it displays the
MathWorks Web site.

11-11

11 Using Generic Instrument Drivers

5 Experiment freely. When you are finished, right-click the Browser-ie_drv
node in the tree and select Delete Object. Close the Test & Measurement
Tool, and close the IE browser window you created in this example.

11-12

Example — Using a Generic Driver at the Command Line

Example — Using a Generic Driver at the Command Line
The Instrument Control Toolbox provides MATLAB commands you can use
in the Command Window or in M-files to create a device object that uses an
driver, set and get properties of the object, and execute functions.

The steps you take to use a driver at the MATLAB command line are
illustrated in the following sections:

• “Creating and Connecting the Device Object” on page 11-13

• “Accessing Properties” on page 11-14

• “Using Functions” on page 11-15

Creating and Connecting the Device Object
This example illustrates how to use the generic driver you created in
“Example — Writing a Generic Driver” on page 11-3.

1 In the MATLAB Command Window, make sure that the directory
containing your driver is on the MATLAB path.

path

If you do not see the directory in the path listing, add the directory to the
path with the command

addpath <directory>

where <directory> is the pathname to the directory containing your driver.

2 Create a device object using your driver. For the driver used in this
example, the icdevice function does not require an argument for a
resource when using a generic driver. What the object connects to and how
it makes that connection are defined in the Create code of your driver.

ie_obj = icdevice('ie_drv');

11-13

11 Using Generic Instrument Drivers

3 Connect the object.

connect(ie_obj);

When the device object is connected, an empty IE window appears on
your screen. Now you can communicate directly with the IE browser from
MATLAB.

Accessing Properties
The driver you created allows you to specify where the browser window
appears on your screen and how large it is. You read and write the properties
of your device object with the get and set functions, respectively.

1 View all of the properties of your device object.

get(ie_obj)
ConfirmationFcn =
DriverName = ie_drv.mdd
DriverType = MATLAB generic
InstrumentModel =
Interface = [1x1 COM.internetexplorer_application]
LogicalName =
Name = Browser-ie_drv
ObjectVisibility = on
RsrcName =
Status = open
Tag =
Timeout = 10
Type = Browser
UserData = []

BROWSER specific properties:
Top = 47
Vsize = 593

11-14

Example — Using a Generic Driver at the Command Line

2 Most of the properties listed belong to all device objects. For this
example, the properties of interest are those listed as BROWSER specific
properties, that is, Top and Vsize.

The Top property defines the IE browser window position in pixels from the
top of the screen. Vsize defines the vertical size of the window in pixels.

3 Shift the IE browser window to the top of the screen.

set(ie_obj, 'Top', 0);

4 With the mouse, grab and drag the IE browser window down away from
the top of the screen.

5 Find the window’s new position by examining the Top property.

get(ie_obj, 'Top')
ans =

120

Adjust the size of the window by setting the Vsize property.

set(ie_obj, 'Vsize', 200);

6 Make the window larger by increasing the property value.

set(ie_obj, 'Vsize', 600);

Using Functions
By using the goTo function of your generic driver, you can control the Web
page displayed in the IE browser window.

11-15

11 Using Generic Instrument Drivers

1 View all of the functions (methods) of your device object.

methods(ie_obj)

Methods for class icdevice:

Contents disp icdevice instrnotify methods size

class display igetfield instrument ne subsasgn

close end inspect invoke obj2mfile subsref

connect eq instrcallback isa open vertcat

ctranspose fieldnames instrfind isequal openvar

delete get instrfindall isetfield propinfo

devicereset geterror instrhelp isvalid selftest

disconnect horzcat instrhwinfo length set

Driver specific methods for class icdevice:

goTo

Most of the methods listed apply to all device objects. For this example,
the method of interest is the one listed under Driver specific methods,
that is, goTo.

2 Use the goTo function to specify the page for the IE browser to display.

invoke(ie_obj, 'goTo', 'www.mathworks.com');

If you have access to the Internet, the IE window should display the
MathWorks Web site.

3 When you are finished with your example, clean up the MATLAB
workspace by removing the object.

disconnect(ie_obj);
delete(ie_obj);
clear ie_obj;

4 Close the IE browser window you created in this example.

11-16

12

Saving and Loading the
Session

This chapter describes how to save and load information associated with an
instrument control session. The sections are as follows.

Saving and Loading Instrument
Objects (p. 12-2)

Save instrument objects and their
associated property values to disk as
an M-file or as a MAT-file.

Debugging: Recording Information
to Disk (p. 12-6)

Save information to disk as a text
file. The saved information includes
the data transferred to and from the
instrument, and event information.

12 Saving and Loading the Session

Saving and Loading Instrument Objects
You can save an instrument object to disk using two possible formats:

• As an M-file using the obj2mfile function

• As a MAT-file using the save command

You can also save data transferred between the object and the instrument
using these two functions. However, it is easier to use the record function
for this purpose, as described in “Debugging: Recording Information to Disk”
on page 12-6.

Saving Instrument Objects to an M-File
You can save an instrument object to an M-file using the obj2mfile function.
obj2mfile provides you with these options:

• Save all property values or save only those property values that differ from
their default values.

Read-only property values are not saved. Therefore, read-only properties
use their default values when you load the instrument object into the
MATLAB workspace. To determine if a property is read-only, use the
propinfo function or examine the property reference pages.

• Save property values using the set syntax or the dot notation.

If the UserData property is not empty, or if a callback property is set to a
cell array of values or a function handle, then the data stored in these
properties is written to a MAT-file when the instrument object is saved.
The MAT-file has the same name as the M-file containing the instrument
object code.

For example, suppose you create the GPIB object g, return instrument
identification information to the variable out, and store out in the UserData
property.

g = gpib('ni',0,1);
g.Tag = 'My GPIB object';
fopen(g)
cmd = '*IDN?';

12-2

Saving and Loading Instrument Objects

fprintf(g,cmd)
out = fscanf(g);
g.UserData = out;

The following command saves g and the modified property values to the
M-file mygpib.m. Because the UserData property is not empty, its value is
automatically written to the MAT-file mygpib.mat.

obj2mfile(g,'mygpib.m');

Use the type command to display mygpib.m at the command line.

Loading the Instrument Object
To load an instrument object that was saved as an M-file into the MATLAB
workspace, type the name of the M-file at the command line. For example,
to load g from the M-file mygpib.m,

g = mygpib

The display summary for g is shown below. Note that the read-only properties
such as Status, BytesAvailable, ValuesReceived, and ValuesSent are
restored to their default values.

GPIB Object Using NI Adaptor : GPIB0-1

Communication Address
BoardIndex: 0
PrimaryAddress: 1
SecondaryAddress: 0

Communication State
Status: closed
RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

12-3

12 Saving and Loading the Session

When loading g into the workspace, the MAT-file mygpib.mat is automatically
loaded and the UserData property value is restored.

g.UserData
ans =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

Saving Objects to a MAT-File
You can save an instrument object to a MAT-file just as you would any
workspace variable — using the save command. For example, to save the
GPIB object g and the variables cmd and out, defined in “Saving Instrument
Objects to an M-File” on page 12-2, to the MAT-file mygpib1.mat,

save mygpib1 g cmd out

Read-only property values are not saved. Therefore, read-only properties use
their default values when you load the instrument object into the MATLAB
workspace. To determine if a property is read-only, use the propinfo function
or examine the property reference pages.

Loading the Instrument Object
To load an instrument object that was saved to a MAT-file into the MATLAB
workspace, use the load command. For example, to load g, cmd, and out
from MAT-file mygpib1.mat,

load mygpib1

The display summary for g is shown below. Note that the read-only properties
such as Status, BytesAvailable, ValuesReceived, and ValuesSent are
restored to their default values.

GPIB Object Using NI Adaptor : GPIB0-1

Communication Address
BoardIndex: 0
PrimaryAddress: 1
SecondaryAddress: 0

Communication State
Status: closed

12-4

Saving and Loading Instrument Objects

RecordStatus: off

Read/Write State
TransferStatus: idle
BytesAvailable: 0
ValuesReceived: 0
ValuesSent: 0

12-5

12 Saving and Loading the Session

Debugging: Recording Information to Disk
Recording information to disk provides a permanent record of your instrument
control session, and is an easy way to debug your application. While the
instrument object is connected to the instrument, you can record this
information to a disk file:

• The number of values written to the instrument, the number of values read
from the instrument, and the data type of the values

• Data written to the instrument, and data read from the instrument

• Event information

You record information to a disk file with the record function. The properties
associated with recording information to disk are given below.

Recording Properties

Property Name Description

RecordDetail Specify the amount of information saved to a
record file.

RecordMode Specify whether data and event information are
saved to one record file or to multiple record files.

RecordName Specify the name of the record file.

RecordStatus Indicate if data and event information are saved
to a record file.

Example: Introduction to Recording Information
This example creates the GPIB object g, records the number of values
transferred between g and the instrument, and stores the information to the
file text myfile.txt.

g = gpib('ni',0,1);
g.RecordName = 'myfile.txt';
fopen(g)
record(g)
fprintf(g,'*IDN?')

12-6

Debugging: Recording Information to Disk

out = fscanf(g);

End the instrument control session.

fclose(g)
delete(g)
clear g

Use the type command to display myfile.txt at the command line.

Creating Multiple Record Files
When you initiate recording with the record function, the RecordMode
property determines if a new record file is created or if new information is
appended to an existing record file.

You can configure RecordMode to overwrite, append, or index. If RecordMode
is overwrite, then the record file is overwritten each time recording is
initiated. If RecordMode is append, then the new information is appended to
the file specified by RecordName. If RecordMode is index, a different disk file
is created each time recording is initiated. The rules for specifying a record
filename are discussed in “Specifying a Filename” on page 12-7.

Specifying a Filename
You specify the name of the record file with the RecordName property. You can
specify any value for RecordName, including a directory path, provided the
filename is supported by your operating system. Additionally, if RecordMode
is index, then the filename follows these rules:

• Indexed filenames are identified by a number. This number precedes the
filename extension and is increased by 1 for successive record files.

• If no number is specified as part of the initial filename, then the first
record file does not have a number associated with it. For example, if
RecordName is myfile.txt, then myfile.txt is the name of the first record
file, myfile01.txt is the name of the second record file, and so on.

• RecordName is updated after the record file is closed.

• If the specified filename already exists, then the existing file is overwritten.

12-7

12 Saving and Loading the Session

The Record File Format
The record file is an ASCII file that contains a record of one or more
instrument control sessions. You specify the amount of information saved to a
record file with the RecordDetail property.

RecordDetail can be compact or verbose. A compact record file contains the
number of values written to the instrument, the number of values read from
the instrument, the data type of the values, and event information. A verbose
record file contains the preceding information as well as the data transferred
to and from the instrument.

Binary data with precision given by uchar, schar, (u)int8, (u)int16, or
(u)int32 is recorded as hexadecimal values. For example, if the integer value
255 is read from the instrument as a 16-bit integer, the hexadecimal value
00FF is saved in the record file. Single- and double-precision floating-point
numbers are recorded as decimal values using the %g format, and as
hexadecimal values using the format specified by the IEEE Standard
754-1985 for Binary Floating-Point Arithmetic.

The IEEE floating-point format includes three components — the sign bit,
the exponent field, and the significant field. Single-precision floating-point
values consist of 32 bits, and the value is given by

value = (-1)sign(2exp-127)(1.significand)

Double-precision floating-point values consist of 64 bits, and the value is
given by

value = (-1)sign(2exp-1023)(1.significand)

The floating-point format component and the associated single-precision and
double-precision bits are given below.

Format Component Single-Precision Bits Double-Precision Bits

sign 1 1

exp 2-9 2-12

significand 10-32 13-64

12-8

Debugging: Recording Information to Disk

For example, suppose you record the decimal value 4.25 using the
single-precision format. The record file stores 4.25 as the hex value 40880000,
which is calculated from the IEEE single-precision floating-point format.
To reconstruct the original value, convert the hex value to a decimal value
using hex2dec:

dval = hex2dec('40880000')
dval =

1.082654720000000e+009

Convert the decimal value to a binary value using dec2bin:

bval = dec2bin(dval,32)
bval =
01000000100010000000000000000000

The interpretation of bval is given by the preceding table. The leftmost bit
indicates the value is positive because (-1)0 = 1. The next 8 bits correspond
to the exponent, which is given by

exp = bval(2:9)
exp =
10000001

The decimal value of exp is 27+20 = 129. The remaining bits correspond to the
significand, which is given by

significand = bval(10:32)
significand =
00010000000000000000000

The decimal value of significand is 2-4 = 0.0625. You reconstruct the
original value by plugging the decimal values of exp and significand into
the formula for IEEE singles:

value = (-1)0(2129 - 127)(1.0625)
value = 4.25

12-9

12 Saving and Loading the Session

Example: Recording Information to Disk
This example extends “Example: Reading Binary Data” on page 4-22 by
recording the associated information to a record file. Additionally, the
structure of the resulting record file is presented:

1 Create an instrument object — Create the GPIB object g associated
with a National Instruments GPIB controller with board index 0, and an
instrument with primary address 1.

g = gpib('ni',0,1);

2 Configure properties — Configure the input buffer to accept a reasonably
large number of bytes, and configure the timeout value to two minutes
to account for slow data transfer.

g.InputBufferSize = 50000;
g.Timeout = 120;

Configure g to execute the callback function instrcallback every time
5000 bytes are stored in the input buffer.

g.BytesAvailableFcnMode = 'byte';
g.BytesAvailableFcnCount = 5000;
g.BytesAvailableFcn = @instrcallback;

Configure g to record information to multiple disk files using the verbose
format. The first disk file is defined as WaveForm1.txt.

g.RecordMode = 'index';
g.RecordDetail = 'verbose';
g.RecordName = 'WaveForm1.txt';

3 Connect to the instrument — Connect g to the oscilloscope.

fopen(g)

4 Write and read data — Initiate recording.

record(g)

Configure the scope to transfer the screen display as a bitmap.

12-10

Debugging: Recording Information to Disk

fprintf(g,'HARDCOPY:PORT GPIB')
fprintf(g,'HARDCOPY:FORMAT BMP')
fprintf(g,'HARDCOPY START')

Initiate the asynchronous read operation, and begin generating events.

readasync(g)

instrcallback is called every time 5000 bytes are stored in the input
buffer. The resulting displays are shown below.

BytesAvailable event occurred at 09:04:33 for the object: GPIB0-1.
BytesAvailable event occurred at 09:04:42 for the object: GPIB0-1.
BytesAvailable event occurred at 09:04:51 for the object: GPIB0-1.
BytesAvailable event occurred at 09:05:00 for the object: GPIB0-1.
BytesAvailable event occurred at 09:05:10 for the object: GPIB0-1.
BytesAvailable event occurred at 09:05:19 for the object: GPIB0-1.
BytesAvailable event occurred at 09:05:28 for the object: GPIB0-1.

Wait until all the data is stored in the input buffer, and then transfer the
data to MATLAB as unsigned 8-bit integers.

out = fread(g,g.BytesAvailable,'uint8');

Toggle the recording state from on to off. Because the RecordMode value is
index, the record filename is automatically updated.

record(g)
g.RecordStatus
ans =
off
g.RecordName
ans =
WaveForm2.txt

5 Disconnect and clean up — When you no longer need g, you should
disconnect it from the instrument, and remove it from memory and from
the MATLAB workspace.

fclose(g)
delete(g)
clear g

12-11

12 Saving and Loading the Session

The Record File Contents
To display the contents of the WaveForm1.txt record file,

type WaveForm1.txt

The record file contents are shown below. Note that data returned by the
fread function is in hex format (most of the bitmap data is not shown).

Legend:
* - An event occurred.
> - A write operation occurred.
< - A read operation occurred.

1 Recording on 18-Jun-2000 at 09:03:53.529. Binary data in
little endian format.

2 > 18 ascii values.
HARDCOPY:PORT GPIB

3 > 19 ascii values.
HARDCOPY:FORMAT BMP

4 > 14 ascii values.
HARDCOPY START

5 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:33.334
6 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:41.775
7 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:50.805
8 * BytesAvailable event occurred at 18-Jun-2000 at 09:04:00.266
9 * BytesAvailable event occurred at 18-Jun-2000 at 09:05:10.306
10 * BytesAvailable event occurred at 18-Jun-2000 at 09:05:18.777
11 * BytesAvailable event occurred at 18-Jun-2000 at 09:05:27.778
12 < 38462 uint8 values.

42 4d cf 03 00 00 00 00 00 00 3e 00 00 00 28 00
00 00 80 02 00 00 e0 01 00 00 01 00 01 00 00 00
00 00 00 96 00 00 00 00 00 00 00 00 00 00 00 00
.
.
.
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff ff
ff ff ff ff ff ff ff ff ff ff ff ff ff ff

13 Recording off.

12-12

13

The Test & Measurement
Tool

This chapter describes how to use the Test & Measurement Tool to access your
hardware interfaces and instrument drivers. The sections are as follows.

Overview (p. 13-2) Describes the capabilities of the
Test & Measurement Tool, its
appearance, and how to start it up.

Using the Test & Measurement Tool
(p. 13-4)

Describes through examples how to
use the Test & Measurement Tool to
communicate with an instrument.

13 The Test & Measurement Tool

Overview
The Test & Measurement Tool displays the resources (hardware, drivers,
interfaces, etc.) accessible to the toolboxes that support the tool, and enables
you to configure and communicate with those resources.

Instrument Control Toolbox Support
You can use the Test & Measurement Tool to manage your instrument control
session. This tool enables you to

• Search for available hardware and drivers

• Create instrument objects

• Connect to an instrument

• Configure instrument settings

• Write data to an instrument

• Read data from an instrument

• Save a log of your session as an M-file

13-2

Overview

The Tree
You start the Test & Measurement Tool by typing

tmtool

You navigate to the various hardware control panes using the tool’s tree.
Start by selecting the toolbox you want to work with, which displays a set of
instructions in the right-hand pane. These instructions explain the basic
steps to establishing communication with an instrument.

For example, the following figure shows the pane displayed when you select
the Instrument Control Toolbox.

13-3

13 The Test & Measurement Tool

Using the Test & Measurement Tool
This example illustrates a typical session using the Test & Measurement Tool
for instrument control. The session entails communicating with a Tektronix
TDS 210 oscilloscope via a GPIB interface.

To start the tool, type

tmtool

on the MATLAB command line.

Hardware
When the tool displays, expand (click on the +) the Instrument Control
Toolbox node in the tree. Next, expand the Hardware node. The tree now
looks like this.

13-4

Using the Test & Measurement Tool

Selecting the Interface and Scanning for GPIB Boards
Next, scan for installed GPIB boards by selecting the GPIB node. The right
pane changes to the Installed GPIB Board list. Click Scan to see what
boards are installed. The following figure shows the scan result from a system
with one Capital Equipment Corp and one Keithley GPIB board.

13-5

13 The Test & Measurement Tool

Scanning for Instruments Connected to GPIB Boards
After determining what GPIB boards are installed, you must determine what
instruments are connected to those boards. Expand the GPIB node and select
a board.

The right pane changes to the GPIB Instruments list. Click Scan to see
what instruments are connected to this board. The following figure shows the
scan result from a system with a Tektronix TDS 210 connected at primary
address 4.

13-6

Using the Test & Measurement Tool

Configuring the Interface
You can change the configuration of the interface by clicking the Configure
tab. This pane displays properties you can set to configure the instrument
communication settings. In the following view of the Configure pane, the
Timeout property value has been set to 15 seconds.

13-7

13 The Test & Measurement Tool

Establishing the Connection
Expand the keithley-Board-0 node and select the instrument at primary
address 4: PAD-4 (TEKTRONIX,TDS 210.... The right pane changes to the
control pane you use for writing and reading data to and from that instrument.

Click Connect to establish communication with the instrument. The tool
creates an interface object representing the communication channel to the
instrument.

13-8

Using the Test & Measurement Tool

Writing and Reading Data
Selecting the Communicate tab displays the pane you use to write and
read data. You can write and read data separately using the Write and
Read buttons, or you can use the Query button to write and read in a single
operation.

The following figure shows the pane after a brief session involving the
following steps:

1 Open communication with the instrument.

2 Enter *IDN? as Data to Write, and click Query (write/read). This executes
the identify command.

3 Enter CURVE? as Data to Write, and click Query. This retrieves the
waveform data from the scope.

13-9

13 The Test & Measurement Tool

Exporting Instrument Data
You can export the data acquired from instruments to any of the following:

• MATLAB workspace as a variable

• Figure window as a plot

• MAT-file for storage in a file

• MATLAB array editor for modification

To export data, select File > Export > Instrument Response(s) from the
menu bar. When the Data Exporter dialog box displays, choose the variables
to export. The following figure shows the Data Exporter set to export the
curve data to the MATLAB workspace as the variable data2.

Exporting the GPIB Object
When you open a connection to an instrument, the Test & Measurement
Tool creates an instrument object automatically. You can export the GPIB
instrument object created in this example as any of the following:

• MATLAB workspace object that you can use as an argument in instrument
control commands

• M-file containing the call to the GPIB constructor and the commands to
set object properties

• MAT-file for storage in a file

To export the object, select File > Export > Instrument Object from the
menu bar. When the Object Exporter dialog box displays, choose the object

13-10

Using the Test & Measurement Tool

to export. The following figure shows the Object Exporter set to export the
object to an M-file. (When you run that M-file, it creates a new object with the
equivalent settings.)

Saving Your Instrument Control Session. The Session Log tab
displays the M-code equivalent of your instrument control session. You can
save this code to an M-file so that you can execute the same commands
programmatically.

Select File > Save Session Log from the menu bar or click Save Session on
the Session Log pane. This displays the Export to M-File dialog box, which
enables you to specify a filename and directory location for the M-file.

13-11

13 The Test & Measurement Tool

Instrument Objects

Interface Objects
The Test & Measurement Tool creates interface objects automatically
when you open a communication channel to an instrument by clicking the
Communication Status button. You can explicitly create and configure an
interface object using the following steps:

1 Expand the Instrument Objects node in the tree, and select Interface
Objects. The Interface Objects pane appears on the right.

2 Click New Object to display the New Object Creation dialog box.

3 Specify the object parameters and click OK to create the new object.

Device Objects
You can create and configure a device object using the following steps:

1 Expand the Instrument Objects node in the tree, and select Device
Objects. The Device Objects pane appears on the right.

2 Click New Object to display the New Object Creation dialog box. In this
case, the Instrument object type is already set for device.

13-12

Using the Test & Measurement Tool

3 Specify or browse for the instrument driver you want to use; then choose
from among the available interface objects, or create one if necessary.

4 Click OK to create the new device object.

Setting Instrument Object Properties
Whether the instrument objects are created automatically, created through
the New Object Creation dialog box, or created on the MATLAB command
line, the Test & Measurement Tool enables you to set the properties of these
objects. To change object properties in the Test & Measurement Tool, follow
these steps:

1 Expand the Instrument Objects node in the tree, then either Interface
Objects or Device Objects, and select the object whose properties you
want to set.

2 Select the Configure tab in the right-hand pane.

3 Set properties displayed in this pane, as shown in the following figures.

13-13

13 The Test & Measurement Tool

Configuring Interface Object Properties

Configuring Device Object Properties

13-14

Using the Test & Measurement Tool

Communicating with Your Instrument

Using an Interface Object. When communicating with your instrument
using an interface object, you send data to instrument in the form of raw
instrument commands. In the following figure, the Test & Measurement Tool
sends the *RST string to the TDS 210 oscilloscope via an interface object. *RST
is the oscilloscope’s reset command.

Communicating via an Interface Object

13-15

13 The Test & Measurement Tool

Using a Device Object. When communicating with your instrument using a
device object, instead of employing instrument commands, you invoke device
object methods (functions) or you set device object properties as provided by
the MATLAB instrument driver for that instrument.

In the following figure, the Test & Measurement Tool resets a TDS 210
oscilloscope by issuing a call to the devicereset function of the instrument
driver. Communicating this way, you don’t need to know what the actual
oscilloscope reset command is.

Communicating via a Device Object

Instrument Drivers
The Test & Measurement Tool enables you to scan for installed drivers, and
to use those drivers when creating device objects.

13-16

Using the Test & Measurement Tool

MATLAB Instrument Drivers
MATLAB instrument drivers include

• MATLAB interface drivers

• MATLAB VXIplug&play drivers

• MATLAB IVI drivers

Select the MATLAB Instrument Drivers node in the tree. Then click Scan
to get an updated display of all the installed MATLAB instrument drivers
found on the MATLAB path.

13-17

13 The Test & Measurement Tool

When the Test & Measurement Tool scans for drivers, it makes them available
as nodes under the driver type node. Expand the MATLAB Instrument
Drivers node to reveal the installed drivers. Select one of them to see the
driver’s details.

You can choose to see the driver’s properties or functions. When you select the
particular property or function, the tool displays that item’s description.

VXIplug&play Drivers
For an example of scanning for installed XVIplug&play drivers with the Test
& Measurement Tool, see “VXIplug&play Drivers” on page 9-3.

IVI Drivers
For an example of scanning for installed IVI-C or IVI-COM drivers with the
Test & Measurement Tool, see “IVI Drivers” on page 10-4. For using the Test
& Measurement Tool to examine or configure an IVI configuration store, see
“Configuring” on page 10-12.

13-18

14

The Instrument Driver
Editor

This chapter describes how to use the Instrument Driver Editor to create,
import, or modify instrument drivers. The sections are as follows.

Overview (p. 14-2) An explanation of MATLAB
instrument drivers, their features,
capabilities, and usage.

Creating MATLAB Instrument
Drivers (p. 14-5)

How to create, modify, save, and
verify instrument drivers using the
MATLAB Instrument Driver Editor.

Properties (p. 14-18) Defining instrument functionality
as properties of the device object
to ease communications with your
instrument.

Functions (p. 14-34) Defining instrument functionality
as functions of the device object
to ease communications with your
instrument.

Groups (p. 14-46) Combining common capabilities of
the device object.

Using Existing Drivers (p. 14-66) Adapting existing drivers for your
instrument.

14 The Instrument Driver Editor

Overview
This section provides an overview of the MATLAB Instrument Driver Editor.
Topics include

• “What Is a MATLAB Instrument Driver?” on page 14-2

• “How Does a MATLAB Instrument Driver Work?” on page 14-3

• “Why Use a MATLAB Instrument Driver?” on page 14-3

For many instruments, a MATLAB instrument driver already exists and you
will not need to create a MATLAB instrument driver for your instrument.
For other instruments, there may be a similar MATLAB instrument driver
and you will need to edit it. If you would like more information on how to
edit a MATLAB instrument driver, you may want to begin with “Modifying
MATLAB Instrument Drivers” on page 14-66.

What Is a MATLAB Instrument Driver?
The Instrument Control Toolbox provides the means of communicating
directly with a hardware instrument through an interface object. If you
are programming directly through an interface object, you need to program
with the command language of the instrument itself. Any substitution of
instrument, such as make or model, may require a change to the appropriate
MATLAB code.

������
	���

�
�&'�$�

���������
������

!���"���
���������

!���"���
����������

�������	��-�	�	
��������

A MATLAB instrument driver offers a layer of interpretation between the
user and the instrument. The instrument driver contains all the necessary
commands for programming the instrument, so that you do not need to be
aware of the specific instrument commands. Instead, you can program the
instrument with familiar or consistent device object properties and functions.

14-2

Overview

The following figure shows how a device object and instrument driver offer
a layer between the command line and the interface object. The instrument
driver handles the instrument-level commands, so that as you program from
the command line, you need only manipulate device object properties and
functions, rather than instrument commands.

������
	���

�
�&'�$�

������
������

���	�

����������

������

���������
������

!���"���
���������

!���"���
����������

�������	��-�	�	
��������

�	���	��./	��
0�� 	���	������1��������

In addition to containing instrument commands, the instrument driver can
also contain MATLAB code to provide analysis based upon instrument setup
or data.

How Does a MATLAB Instrument Driver Work?
A MATLAB instrument driver contains information on the functionality
supported by an instrument. You access this functionality through a device
object’s properties and functions.

When you query or configure a property of the device object using the get
or set function, or when you call (invoke) a function on the device object,
the MATLAB instrument driver provides a translation to determine what
instrument commands are written to the instrument or what MATLAB code
is executed.

Why Use a MATLAB Instrument Driver?
Using a MATLAB instrument driver isolates you from the instrument
commands. Therefore, you do not need to be aware of the instrument syntax,
but can use the same code for a variety of related instruments, ignoring the
differences in syntax from one instrument to the next.

For example, suppose you have two different oscilloscopes in your shop, each
with its own set of commands. If you want to perform the same tasks with
the two different instruments, you can create an instrument driver for each

14-3

14 The Instrument Driver Editor

scope so that you can control each with the same code. Then substitution of
one instrument for another does not require a change in the MATLAB code
being used to control it, but only a substitution of the instrument driver.

14-4

Creating MATLAB Instrument Drivers

Creating MATLAB Instrument Drivers
This section tells how to create a MATLAB instrument driver using the
MATLAB Instrument Driver Editor. Topics include

• “Driver Components” on page 14-5

• “MATLAB Instrument Driver Editor Features” on page 14-6

• “Saving MATLAB Instrument Drivers” on page 14-6

• “Driver Summary and Control Commands” on page 14-6

• “Initialization and Cleanup” on page 14-11

Driver Components
A MATLAB instrument driver contains information about an instrument and
defines the functionality supported by the instrument. The components of a
MATLAB instrument driver are described below.

Driver Component Description

Driver Summary and
Control Commands

Basic information about the instrument, e.g.,
manufacturer or model number.

Initialization and
Cleanup

Code that is executed at various stages in the
instrument control session, e.g., code that is
executed upon connecting to the instrument.

Properties A property is generally used to configure or query
an instrument’s state information.

Functions A function is generally used to control or configure
an instrument.

Groups A group combines common functionality of the
instrument into one component.

Depending on the instrument and the application for which the driver is being
used, all components of the driver may not be defined. The necessary driver
components needed for your application can be defined with the MATLAB
Instrument Driver Editor.

14-5

14 The Instrument Driver Editor

MATLAB Instrument Driver Editor Features
The MATLAB instrument driver editor is a tool that creates or edits a
MATLAB instrument driver. Specifically, it allows you to

• Add/remove/modify properties

• Add/remove/modify functions

• Define MATLAB code to wrap around commands sent to instrument

The MATLAB Instrument Driver Editor can be launched with the midedit
command.

midedit

Throughout the remainder of this section, each driver component will
be described and examples will be shown on how to add the driver
component information to a new MATLAB instrument driver called
tektronix_tds210_ex.mdd. The tektronix_tds210_ex.mdd driver will
define basic information and instrument functionality for a Tektronix TDS
210 oscilloscope.

Saving MATLAB Instrument Drivers
An instrument driver can be saved to any directory with any
name. It is recommended that the instrument driver be saved to a
directory in the MATLAB path and that the name follows the format
manufacturer_model.mdd. For example, an instrument that is used
with a Tektronix TDS 210 oscilloscope should be saved with the name
tektronix_tds210.mdd.

Driver Summary and Control Commands
You can assign basic information about the instrument to the MATLAB
instrument driver. Summary information can be used to identify the MATLAB
instrument driver and the instrument that it represents. Control commands
can be used to reset, test, and read error messages from the instrument.
Together, this information can be used to initialize and verify the instrument.

Topics in this section include

14-6

Creating MATLAB Instrument Drivers

• “Driver Summary” on page 14-7

• “Control Commands” on page 14-7

• “Example — Defining Driver Summary and Control Commands” on page
14-8

• “Verifying Driver Summary and Control Commands” on page 14-9

Driver Summary
You can assign basic information that describes your instrument in the
instrument driver. This information includes the manufacturer of the
instrument, the model number of the instrument and the type of the
instrument. A version can also be assigned to the driver to assist in revision
control.

Control Commands
You can define basic control commands supported by the instrument. The
control commands can be accessed through device object properties and
functions. The control commands and how they can be accessed are described
below.

Control
Command

Accessed with
Device Object’s

Example Instrument
Command Description

Identify InstrumentModel
property

*IDN? Returns the identification
string of the instrument

Reset devicereset
function

*RST Returns the instrument to a
known state

Self test selftest function *TST? Tests the instrument’s
interface

Error geterror function ErrLog:Next? Retrieves the next
instrument error message

The MATLAB instrument driver editor assigns default values for the control
commands. The control commands should be modified appropriately to match
the instrument’s command set.

14-7

14 The Instrument Driver Editor

Example — Defining Driver Summary and Control Commands
This example defines the basic driver information and control commands for a
Tektronix TDS 210 oscilloscope using the MATLAB instrument driver editor.
In the MATLAB Instrument Driver Editor,

1 Select the Summary node in the tree.

2 In the Driver summary pane

1 Enter Tektronix in the Manufacturer field.

2 Enter TDS 210 in the Model field.

3 Select Oscilloscope in the Instrument type field.

4 Enter 1.0 in the Driver version field.

3 In the Control commands pane

1 Leave the Identify field with *IDN?.

2 Leave the Reset field with *RST.

3 Leave the Self test field with *TST?

4 Update the Error field with ErrLog:Next?

4 Click the Save button. Specify the name of the instrument driver as
tektronix_tds210_ex.mdd.

14-8

Creating MATLAB Instrument Drivers

Note For additional information on instrument driver nomenclature, refer to
“Saving MATLAB Instrument Drivers” on page 14-6.

Verifying Driver Summary and Control Commands
This procedure verifies the summary information defined in the Driver
Summary and Control Commands panes. In this example, the driver name
is tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Keithley GPIB board at board
index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the defined driver information.

obj

Instrument Device Object Using Driver : tektronix_tds210_ex.mdd

14-9

14 The Instrument Driver Editor

Instrument Information
Type Oscilloscope
Manufacturer Tektronix
Model TDS 210

Driver Information
DriverType MATLAB Instrument Driver
DriverName tekronix_tds210_ex.mdd
DriverVersion 1.0

Communication State
Status closed

instrhwinfo(obj)
ans =

Manufacturer: 'Tektronix'
Model: 'TDS 210'
Type: 'Oscilloscope'

DriverName: 'h:\documents\tektronix_tds210_ex.mdd'

3 Connect to the instrument.

connect(obj)

4 Verify the control commands.

get(obj, 'InstrumentModel')
ans =

TEKTRONIX,TDS 210,0,CF:91.1CT FV:v2.03 TDS2MM:MMV:v1.04

devicereset(obj)
selftest(obj)
ans =

0

geterror(obj)
ans =

''

14-10

Creating MATLAB Instrument Drivers

5 Disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj g])

Initialization and Cleanup
This section describes how to define code that is executed at different stages in
the instrument control session, so that the instrument can be set to a desired
state at particular times. Specifically, you can define code that is executed
after the device object is created, after the device object is connected to the
instrument, or before the device object is disconnected from the instrument.
Depending on the stage, the code can be defined as a list of instrument
commands that will be written to the instrument or as MATLAB code.

Topics in this section include

• Definitions of the types of code that can be defined

• Examples of code for each supported stage

• Steps used to verify the code

Create Code
You define create code to ensure that the device object is configured to support
the necessary properties and functions:

• Create code is evaluated immediately after the device object is created.

• Create code can only be defined as MATLAB code.

Example — Defining Create Code
This examples defines the create code that ensures that the device object can
transfer the maximum waveform size, 2500 data points, supported by the
Tektronix TDS 210 oscilloscope. In the MATLAB instrument driver editor,

1 Select the Initialization and Cleanup node in the tree.

14-11

14 The Instrument Driver Editor

2 Select the Create tab and enter the MATLAB code to execute on device
object creation.

% Get the interface object and disconnect from instrument.
g = get(obj, 'Interface');
fclose(g);

% Configure the interface object's buffers to handle up to
% 2500 points (two bytes per point requires 5000 bytes).
set(g, 'InputBufferSize', 5000);
set(g, 'OutputBufferSize', 5000);

3 Click the Save button.

Verifying Create Code
This procedure verifies the MATLAB create code defined. In this example,
the driver name is tektronix_tds210_ex.mdd. Communication with the
Tektronix TDS 210 oscilloscope at primary address 2 is done via a Keithley
GPIB board at board index 0. From the MATLAB command line,

1 Create the interface object, g; and verify the default input and output
buffer size values.

14-12

Creating MATLAB Instrument Drivers

g = gpib('keithley', 0, 2);
get(g, {'InputBufferSize', 'OutputBufferSize'})
ans =

[512] [512]

2 Create the device object, obj, using the icdevice function.

obj = icdevice('tektronix_tds210_ex.mdd', g);

3 Verify the create code by querying the interface object’s buffer sizes.

get(g, {'InputBufferSize', 'OutputBufferSize'})
ans =

[5000] [5000]

4 Delete the objects.

delete([obj g])

Connect Code
In most cases you need to know the state or configuration of the instrument
when you connect the device object to it. You can define connect code to ensure
that the instrument is properly configured to support the device object’s
properties and functions.

Connect code is evaluated immediately after the device object is connected to
the instrument with the connect function. The connect code can be defined
as a series of instrument commands that will be written to the instrument
or as MATLAB code.

Example — Defining Connect Code
This examples defines the connect code that ensures the Tektronix TDS 210
oscilloscope is configured to support the device object properties and functions.
Specifically, the instrument will be returned to a known set of instrument
settings (instrument reset) and the instrument will be configured to omit
headers on query responses. In the MATLAB instrument driver editor,

1 Select the Initialization and Cleanup node in the tree.

14-13

14 The Instrument Driver Editor

2 Select the Connect tab and enter the instrument commands to execute
when the device object is connected to the instrument.

• Select Instrument Commands from the Function style menu.

• Enter the *RST command in the Command text field, then click Add.

• Enter the HEADER OFF command in the Command text field, and then
click Add.

3 Click the Save button.

Verifying Connect Code
This procedure verifies the instrument commands defined in the connect
code. In this example, the driver name is tektronix_tds210_ex.mdd.
Communication with the Tektronix TDS 210 oscilloscope at primary address
2 is done via a Keithley GPIB board at board index 0. From the MATLAB
command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

14-14

Creating MATLAB Instrument Drivers

2 Connect to the instrument.

connect(obj)

3 Verify the connect code by querying the Header state of the instrument.

query(g, 'Header?')
ans =

0

4 Disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj g])

Disconnect Code
By defining disconnect code, you can ensure that the instrument and the
device object are returned to a known state after communication with the
instrument is completed.

Disconnect code is evaluated prior to the device object’s being disconnected
from the instrument with the disconnect function. This allows the disconnect
code to communicate with the instrument. Disconnect code can be defined as
a series of instrument commands that will be written to the instrument or
it can be defined as MATLAB code.

Example — Defining Disconnect Code
This example defines the disconnect code that ensures that the Tektronix TDS
210 oscilloscope is returned to a known state after communicating with the
instrument using the device object. In the MATLAB instrument driver editor,

1 Select the Initialization and Cleanup node in the tree.

2 Select the Disconnect tab and enter the MATLAB code to execute when
the device object is disconnected from the instrument.

• Select M-Code from the Function style menu.

• Define the MATLAB code that will reset the instrument and configure
the interface object’s buffers to their default values.

14-15

14 The Instrument Driver Editor

% Get the interface object.
g = get(obj, 'Interface');

% Reset the instrument to a known state.
fprintf(g, '*RST');

3 Click the Save button.

Verifying Disconnect Code
This procedure verifies the MATLAB code defined in the disconnect code. In
this example, the driver name is tektronix_tds210_ex.mdd. Communication
with the Tektronix TDS 210 oscilloscope at primary address 2 is done via a
Keithley GPIB board at board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 Connect to the instrument.

connect(obj)

14-16

Creating MATLAB Instrument Drivers

3 Alter some setting on the instrument so that a change can be observed
when you disconnect. For example, the oscilloscope’s contrast can be
changed by pressing its front pane Display button, and then the Contrast
Decrease button.

4 Disconnect from the instrument and observe that its display resets.

disconnect(obj)

5 Delete the objects.

delete([obj g])

14-17

14 The Instrument Driver Editor

Properties
You can make the programming of instruments through device objects easier
and more consistent by using properties. A property can be used to query or
set an instrument setting or attribute. For example, an oscilloscope’s trigger
level may be controlled with a property called TriggerLevel, which you can
read or control with the get or set function. Even if two different scopes have
different trigger syntax, you can use the same property name, TriggerLevel,
to control them, because each scope will have its own instrument driver.

Another advantage of properties is that you can define them with certain
acceptable values (enumerated) or limits (bounded) that can be checked before
the associated commands are sent to the instrument.

Topics in this section include

• “Property Components” on page 14-18

• “Examples of Properties” on page 14-21

Property Components
The behavior of the property is defined by the components described below.

Set Code
The set code defines the code that is executed when the property is configured
with the set function. The set code can be defined as an instrument command
that will be written to the instrument or it can be defined as MATLAB code.

If the set code is M-code, it can include any number of commands or MATLAB
code wrapped around instrument commands to provide additional processing
or analysis.

If the set code is defined as an instrument command, then the command
written to the instrument will be the instrument command concatenated
with a space and the value specified in the call to set. For example, the
set code for the DisplayContrast property is defined as the instrument
command DISplay:CONTRast. When the set function below is evaluated, the
instrument command sent to the instrument will be DISplay:CONTRast 54.

14-18

Properties

set(obj, 'DisplayContrast', 54);

Get Code
The get code defines the code that is executed when the property value is
queried with the get function. The get code can be defined as an instrument
command that will be written to the instrument or it can be defined as
MATLAB code.

Note The M-code used for your property’s get code and set code cannot
include calls to the fclose or fopen functions on the interface object being
used to access your instrument.

Accepted Property Values
You can define the values that the property can be set to so that only valid
values are written to the instrument and an error would be returned before
an invalid value could be written to the instrument.

• A property value can be defined as a double, a string, or a Boolean.

• A property value that is defined as a double can be restricted to accept only
doubles within a certain range or a list of enumerated doubles. For example,
a property could be defined to accept a double within the range of [0 10] or
a property could be defined to accept one of the values [1,7,8,10].

• A property value that is defined as a string can be restricted to accept
a list of enumerated strings. For example, a property could be defined
to accept the strings min and max.

Additionally, a property can be defined to accept multiple property value
definitions. For example, a property could be defined to accept a double
ranging between [0 10] or the strings min and max.

Property Value Dependencies
A property value can be dependent upon another property’s value. For
example, in controlling a power supply, the property VoltageLevel can be
configured to the following values:

14-19

14 The Instrument Driver Editor

• A double ranging between 0 and 10 when the value of property
VoltageOutputRange is high

• A double ranging between 0 and 5 when the value of property
VoltageOutputRange is low

When VoltageLevel is configured, the value of VoltageOutputRange is
queried. If the value of VoltageOutputRange is high, then VoltageLevel
can be configured to a double ranging between 0 and 10. If the value of
VoltageOutputRange is low, then VoltageLevel can be configured to a double
ranging between 0 and 5.

Default Value
The default value of the property is the value that the property is configured
to when the object is created.

Read-Only Value
The read-only value of the property defines when the property can be
configured. Valid options are described below.

Read-Only
Value

Description

Never The property can be configured at all times with the
set function.

While Open The property can only be configured with the set
function when the device object is not connected to the
instrument. A device object is disconnected from the
instrument with the disconnect function.

Always The property cannot be configured with the set
function.

Help Text
The help text provides information on the property. This information is
returned with the instrhelp function.

instrhelp(obj, 'PropertyName')

14-20

Properties

Examples of Properties
This section includes several examples of creating, setting, and reading
properties, with steps for verifying the behavior of these properties.

Example — Creating a
Double-Bounded Property (p. 14-21)

Create a double-bounded property,
in which the property value must
fall within set limits. This property
controls the scope’s display contrast.

Example — Creating an Enumerated
Property (p. 14-25)

Create an enumerated property, in
which the property value can be set
to certain acceptable values. This
property controls the scope’s cursor
type.

Example — An M-Code Style
Property (p. 14-29)

Create an M-code style property, in
which a body of MATLAB code is
executed when a get is performed on
the property. This code queries the
cursor type, then measures either
voltage or time, accordingly.

Example — Creating a Double-Bounded Property
This example creates a property that will configure the Tektronix TDS 210
oscilloscope’s LCD display contrast. The oscilloscope display can be configured
to a value in the range [1 100]. In the MATLAB instrument driver editor,

1 Select the Properties node in the tree.

2 Enter the property name, DisplayContrast, in the Name text field and
click the Add button. The new property’s name, DisplayContrast, appears
in the Property Name table.

3 Expand the Properties node in the tree to display all the defined
properties.

4 Select the DisplayContrast node from the properties displayed in the tree.

14-21

14 The Instrument Driver Editor

5 Select the Code tab to define the set and get commands for the
DisplayContrast property.

• Select Instrument Commands in the Property style field.

• Enter DISplay:CONTRast? in the Get Command text field.

• Enter DISplay:CONTRast in the Set Command text field.

6 Select the Property Values tab to define the allowed property values.

• Select Double in the Data Type field.

• Select Bounded in the Constraint field.

• Enter 1.0 in the Minimum field.

• Enter 100.0 in the Maximum field.

7 Select the General tab to finish defining the property behavior.

• Enter 50 in the Default value text field.

• Select never in the Read only field.

14-22

Properties

• In the Help text field, enter Sets or queries the contrast of the
LCD display.

8 Click the Save button.

Verifying the Behavior of the Property. This procedure verifies
the behavior of the property. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Keithley GPIB board at board
index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the DisplayContrast property’s current value. Calling get on the
object lists all its properties.

get(obj)

14-23

14 The Instrument Driver Editor

Calling get on the DisplayContrast property lists its current value.

get(obj, 'DisplayContrast ')
ans =

50

3 View acceptable values for the DisplayContrast property. Calling set on
the object lists all its settable properties.

set(obj)

Calling set on the DisplayContrast property lists the values to which you
can set the property.

set(obj, 'DisplayContrast')
[1.0 to 100.0]

4 Try setting the property to values inside and outside of the specified range.

set(obj, 'DisplayContrast', 17)
get(obj, 'DisplayContrast')
ans =

17
set(obj, 'DisplayContrast', 120)
??? Invalid value for DisplayContrast. Valid values: a value
between 1.0 and 100.0.

5 View the help you wrote.

instrhelp(obj,'DisplayContrast')
DISPLAYCONTRAST [1.0 to 100.0]
Sets or queries the contrast of the LCD display.

6 List the DisplayContrast characteristics that you defined in the Property
Values and General tabs.

info = propinfo(obj,'DisplayContrast')
info =

Type: 'double'
Constraint: 'bounded'

ConstraintValue: [1 100]
DefaultValue: 50

14-24

Properties

ReadOnly: 'never'
InterfaceSpecific: 1

7 Connect to your instrument to verify the set and get code.

connect(obj)

When you issue the get function in MATLAB, the
tektronix_tds210_ex.mdd driver actually sends the DISplay:CONTRast?
command to the instrument.

get(obj, 'DisplayContrast')
ans =

17

When you issue the set function in MATLAB, the
tektronix_tds210_ex.mdd driver actually sends the DISplay:CONTRast
34 command to the instrument.

set(obj, 'DisplayContrast', 34)

8 Finally, disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj g])

Example — Creating an Enumerated Property
This example creates a property that will select and display the Tektronix
TDS 210 oscilloscope’s cursor. The oscilloscope allows two types of cursor.
It supports a horizontal cursor that measures the vertical units in volts,
divisions, or decibels, and a vertical cursor that measures the horizontal units
in time or frequency. In the MATLAB instrument driver editor,

1 Select the Properties node in the tree.

2 Enter the property name, CursorType, in the Name text field and click
the Add button. The new property’s name CursorType appears in the
Property Name table.

3 Expand the Properties node to display all the defined properties.

14-25

14 The Instrument Driver Editor

4 Select the CursorType node from the properties displayed in the tree.

5 Select the Code tab to define the set and get commands for the
CursorType property.

• Select Instrument Commands in the Property style field.

• Enter CURSor:FUNCtion? in the Get Command text field.

• Enter CURSor:FUNCtion in the Set Command text field.

6 Select the Property Values tab to define the allowed property values.

• Select String in the Data Type field.

• Select Enumeration in the Constraint field.

• Enter none in the New property value text field and click the Add
button. Then enter OFF in the Instrument Value table field.

• Similarly add the property value voltage, with instrument value HBArs.

• Similarly add the property value time, with instrument value VBArs.

14-26

Properties

7 Select the General tab to finish defining the property behavior.

• Enter none in the Default value text field.

• Select never in the Read only field.

• In the Help text field, enter Specifies the type of cursor.

8 Click the Save button.

Verifying the Behavior of the Property. This procedure verifies
the behavior of the property. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Keithley GPIB board at board
index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the CursorType property’s current value. Calling get on the object
lists all its properties.

get(obj)

Calling get on the CursorType property lists its current value.

get(obj, 'CurosrType')
ans =

none

3 View acceptable values for the CursorType property. Calling set on the
object lists all its settable properties.

set(obj)

Calling set on the CursorType property lists the values to which you can
set the property.

set(obj, 'CursorType')
[{none} | voltage | time]

14-27

14 The Instrument Driver Editor

4 Try setting the property to valid and invalid values.

set(obj, 'CursorType', 'voltage')
get(obj, 'CursorType')
ans =

voltage
set(obj, 'CursorType', 'horizontal')
??? The 'horizontal' enumerated value is invalid.

5 View the help you wrote.

instrhelp(obj,'CursorType')
CURSORTYPE [{none} | voltage | time]
Specifies the type of cursor.

6 List the CursorType characteristics that you defined in the Property
Values and General tabs.

info = propinfo(obj,'CursorType')
info =

Type: 'string'
Constraint: 'enum'

ConstraintValue: {3x1 cell}
DefaultValue: 'none'

ReadOnly: 'never'
InterfaceSpecific: 1

info.ContraintValue
ans =
'none'
'voltage'
'time'

7 Connect to your instrument to verify the set and get code.

connect(obj)

When you issue the set function in MATLAB, the
tektronix_tds210_ex.mdd driver actually sends the CURSor:FUNCtion
VBArs command to the instrument.

set(obj, 'CursorType', 'time')

14-28

Properties

When you issue the get function in MATLAB, the
tektronix_tds210_ex.mdd driver actually sends the CURSor:FUNCtion?
command to the instrument.

get(obj,'CursorType')
ans =
time

8 Finally disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj g])

Example — An M-Code Style Property
This example creates a property that will return the difference between two
cursors of the Tektronix TDS 210 oscilloscope. The oscilloscope allows two
types of cursor. It supports a horizontal cursor that measures the vertical
units in volts, divisions, or decibels, and a vertical cursor that measures
the horizontal units in time or frequency. The previous example created a
property, CursorType, that selects and displays the oscilloscope’s cursor. In
the MATLAB instrument driver editor,

1 Select the Properties node in the tree.

2 Enter the property name, CursorDelta, in the New Property text field
and click Add. The new property’s name, CursorDelta, appears in the
Property Name table.

3 Expand the Properties node to display all the defined properties.

4 Select the CursorDelta node from the properties displayed in the tree.

5 Select the Code tab to define the set and get commands for the
CursorDelta property.

• Select M-Code in the Property style field.

• Since the CursorDelta property is read-only, no MATLAB code will be
added to the MATLAB Set Function text field.

• The following MATLAB code is added to the MATLAB Get Function
text field.

14-29

14 The Instrument Driver Editor

% Extract the interface object.
interface = get(obj, 'Interface');

% Determine the type of cursor being displayed.
type = get(obj, 'CursorType')

% Based on the cursor type, query the instrument.
switch (type)
case 'none'

propertyValue = 0;
case 'voltage'

propertyValue = query(interface, 'CURSor:HBArs:DELTa?');
propertyValue = str2double(propertyValue);

case 'time'
propertyValue = query(interface, 'CURSor:VBArs:DELTa?');
propertyValue = str2double(propertyValue);

end

14-30

Properties

6 Select the Property Values tab to define the allowed property values.

• Select Double in the Data Type field.

• Select None in the Constraint field.

7 Select the General tab to finish defining the property behavior.

• Enter 0 in the Default value text field.

• Select always in the Read only field.

• In the Help text field, enter Returns the difference between the
two cursors.

8 Click the Save button.

14-31

14 The Instrument Driver Editor

Verifying the Behavior of the Property. This procedure verifies
the behavior of the property. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Keithley GPIB board at board
index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the CursorDelta property’s current value. Calling get on the object
lists all its properties.

get(obj)

3 Calling get on the CursorDelta property lists its current value.

get(obj, 'CursorDelta')
ans =

0

4 Calling set on the object lists all its settable properties. Note that as a
read-only property, CursorDelta is not listed in the output.

set(obj)

5 Calling set on the CursorDelta property results in an error message.

set(obj, 'CursorDelta')
??? Attempt to modify read-only device property: 'CursorDelta'.

6 Setting the property to a value results in an error message.

set(obj, 'CursorDelta', 4)
??? Changing the 'CursorDelta' property of device objects is not
allowed.

7 View the help you wrote.

instrhelp(obj,'CursorDelta')
CURSORDELTA (double) (read only)
Returns the difference between the two cursors.

14-32

Properties

8 List the CursorDelta characteristics that you defined in the Property
Values and General tabs.

info = propinfo(obj,'CursorDelta')
info =

Type: 'double'
Constraint: 'none'

ConstraintValue: []
DefaultValue: 0

ReadOnly: 'always'
InterfaceSpecific: 1

9 Connect to your instrument to verify the get code.

connect(obj)

When you issue the get function in MATLAB, the
tektronix_tds210_ex.mdd driver actually executes the MATLAB code
that was specified.

get(obj, 'CursorDelta')
ans =

1.6000

10 Finally, disconnect from the instrument and delete the objects.

disconnect(obj)
delete([obj g])

14-33

14 The Instrument Driver Editor

Functions
Functions allow you to call the instrument to perform some task or tasks,
which may return results as text data or numeric data. The function may
involve a single command to the instrument, or a sequence of instrument
commands. A function may include MATLAB code to determine what
commands are sent to the instrument or to perform analysis on data returned
from the instrument. For example, a function may request that a meter run
its self-calibration, returning the status as a result. Another function may
read a meter’s scaling, request a measurement, adjust the measured data
according to the scale reading, and then return the result.

Topics in this section include

• “Function Components” on page 14-34

• “Examples of Functions” on page 14-35

Function Components
The behavior of the function is defined by the components described below.

Code
The code defines the code that is executed when the function is evaluated with
the invoke function. The code can be defined as an instrument command that
will be written to the instrument or it can be defined as MATLAB code.

If the code is defined as an instrument command, the instrument command
can be defined to take an input argument. All occurrences of <input
argument name> in the instrument command are substituted with the input
value passed to the invoke function. For example, if a function is defined
with an input argument, start, and the instrument command is defined as
Data:Start <start>, and a start value of 10 is passed to the invoke function,
the command Data:Start 10 is written to the instrument.

If the code is defined as an instrument command, the instrument command
can also be defined to return an output argument. The output argument can
be returned as numeric data or as text data.

14-34

Functions

If the code is defined as MATLAB code, you can determine which commands
are sent to the instrument, and the data results from the instrument can be
manipulated, adjusted, or analyzed as needed.

Note The M-code used for your function’s MATLAB code cannot include calls
to the fclose or fopen functions on the interface object being used to access
your instrument.

Help Text
The help text provides information on the function.

Examples of Functions
This section includes several examples of functions, and steps to verify the
behavior of these functions.

Example — A Simple Function
(p. 14-36)

Create a simple function that
requires no arguments and returns
no data. The function sends the
autoset command to the oscilloscope
to stabilize a waveform display.

Example — A Function with
Instrument Commands that Use
Input and Output Arguments
(p. 14-38)

Create a function that requires
input arguments and returns
results. The function configures
the oscilloscope’s waveform setup
with source, start address, and stop
address information; and then reads
back the waveform setup data from
the scope.

Example — An M-Code Style
Function (p. 14-41)

Create an M-code style function.
The function reads a waveform from
the oscilloscope, then adjusts the
waveform with scaling and offset
factors.

14-35

14 The Instrument Driver Editor

Example — A Simple Function
This example creates a function that will cause the Tektronix TDS 210
oscilloscope to adjust its vertical, horizontal and trigger controls to display a
stable waveform. In the MATLAB instrument driver editor,

1 Select the Functions node in the tree.

2 Enter the function name, autoset, in the Add function text field and
click the Add button. The new function’s name, autoset, appears in the
Function Name table.

3 Expand the Functions node to display all the defined functions.

4 Select the autoset node from the functions displayed in the tree.

5 Select the Code tab to define commands executed for this function.

• Select Instrument Commands in the Function style field.

• In the Define function commands pane, enter AUTOSet EXECute in
the Add command field and click the Add button.

14-36

Functions

6 Select the Help tab to define the help text for this function.

• In the Help text field, enter INVOKE(OBJ, 'autoset') causes the
oscilloscope to adjust its vertical, horizontal, and trigger
controls to display a stable waveform.

7 Click the Save button.

Verifying the Behavior of the Function. This procedure verifies
the behavior of the function. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Keithley GPIB board at board
index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the method you created.

methods(obj)

Methods for class icdevice:

Contents error instrhwinfo open
class fieldnames instrnotify openvar
close get instrument propinfo
connect geterror invoke selftest
ctranspose horzcat isa set
delete icdevice isequal sim
devicereset igetfield isetfield size
disconnect inspect isvalid subsasgn
disp instrcallback length subsref
display instrfind methods vertcat
end instrfindall ne
eq instrhelp obj2mfile

Driver specific methods for class icdevice:

autoset

14-37

14 The Instrument Driver Editor

3 View the help you wrote.

instrhelp(obj, 'autoset')
INVOKE(OBJ, 'autoset') causes the oscilloscope to adjust its
vertical, horizontal, and trigger controls to display a stable
waveform.

4 Using the controls on the instrument, set the scope so that its display is
unstable. For example, set the trigger level outside the waveform range
so that the waveform scrolls across the display.

5 Connect to your instrument and execute the function. Observe how the
display of the waveform stabilizes.

connect(obj)
invoke(obj, 'autoset')

6 Disconnect from your instrument and delete the object.

disconnect(obj)
delete([obj g])

Example — A Function with Instrument Commands that Use
Input and Output Arguments
This example creates a function that configures which waveform will be
transferred from the Tektronix TDS 210 oscilloscope, and configures the
waveform’s starting and ending data points. In the MATLAB instrument
driver editor,

1 Select the Functions node in the tree.

2 Enter the function name, configureWaveform, in the New function
text field and click the Add button. The new function’s name,
configureWaveform, appears in the Function Name table.

3 Expand the Functions node to display all the defined functions.

4 Select the configureWaveform node from the functions displayed in the
tree.

5 Select the Code tab to define commands executed for this function.

14-38

Functions

• Select Instrument Commands in the Function style field.

• Enter the input arguments source, start, stop in the Input
arguments field.

• Enter Data:Source <source> in the New command field and click the
Add button. In the table, select an Output type of None and a Format
type of N/A.

• Similarly, add the command: Data:Source? with ASCII Output and
text Format.

• Similarly, add the command: Data:Start <start> with NONE Output
and N/A Format.

• Similarly, add the command: Data:Start? with ASCII Output and
numeric Format.

• Similarly, add the command: Data:Stop <stop> with NONE Output
and N/A Format.

• Similarly, add the command: Data:Stop? with ASCII Output and
numeric Format.

14-39

14 The Instrument Driver Editor

6 Select the Help tab to define the help text for this function.

• In the Help text field, enter [SOURCE, START, STOP] = INVOKE(OBJ,
'configureWaveform', SOURCE, START, STOP) configures the
waveform that will be transferred from the oscilloscope.

7 Click the Save button.

Verifying the Behavior of the Function. This procedure verifies
the behavior of the function. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Keithley GPIB board at board
index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the method you created.

methods(obj)

Methods for class icdevice:

Contents error instrhwinfo open
class fieldnames instrnotify openvar
close get instrument propinfo
connect geterror invoke selftest
ctranspose horzcat isa set
delete icdevice isequal sim
devicereset igetfield isetfield size
disconnect inspect isvalid subsasgn
disp instrcallback length subsref
display instrfind methods vertcat
end instrfindall ne
eq instrhelp obj2mfile

Driver specific methods for class icdevice:

autoset configureWaveform

14-40

Functions

3 View the help you wrote.

instrhelp(obj, 'configureWaveform')

[SOURCE, START, STOP] = INVOKE(OBJ, 'configureWaveform', SOURCE,
START, STOP) configures the waveform that will be transferred from
the oscilloscope.

4 Connect to your instrument and execute the function.

connect(obj)
[source, start, stop] = invoke(obj, 'configureWaveform', 'CH1',
1, 500)
source =
CH1

start =
1

stop =
500

[source, start, stop] = invoke(obj, 'configureWaveform', 'CH2',
0, 3500)
source =
CH2

start =
1

stop =
2500

5 Disconnect from your instrument and delete the object.

disconnect(obj)
delete([obj g])

Example — An M-Code Style Function
This example creates a function that will transfer and scale the waveform from
the Tektronix TDS 210 oscilloscope. In the MATLAB instrument driver editor,

14-41

14 The Instrument Driver Editor

1 Select the Functions node in the tree.

2 Enter the function name, getWaveform, in the Add function text field and
click the Add button. The new function’s name, getWaveform, appears in
the Function Name table.

3 Expand the Functions node to display all the defined functions.

4 Select the getWaveform node from the functions displayed in the tree.

5 Select the Code tab to define commands executed for this function.

• Select M-Code in the Function style field.

• Update the function line in the Define MATLAB function text field to
include an output argument.

function yout = getWaveform(obj)

• Add the following MATLAB code to the Define MATLAB function text
field. (The instrument may require a short pause before any statements
that read a waveform, to allow its completion of the data collection.)

% Get the interface object.
g = get(obj, 'Interface');

% Configure the format of the data transferred.
fprintf(g, 'Data:Encdg SRIBinary');
fprintf(g, 'Data:Width 1');

% Determine which waveform is being transferred.
source = query(g, 'Data:Source?');

% Read the waveform.
fprintf(g, 'Curve?');
ydata = binblockread(g, 'int8');

% Read the trailing terminating character.
fscanf(g);

% Scale the data.
fprintf(g, ['WFMPre:' source ':Yoff?']);

14-42

Functions

yoffset = fscanf(g, '%g');

fprintf(g, ['WFMPre:' source ':YMult?']);
ymult = fscanf(g, '%g');

yout = (ydata*ymult) + yoffset;

6 Click the Help tab to define the help text for this function.

• In the Help text field, enter DATA = INVOKE(OBJ, 'getWaveform')
transfers and scales the waveform from the oscilloscope.

14-43

14 The Instrument Driver Editor

7 Click the Save button.

Verifying the Behavior of the Function. This procedure verifies
the behavior of the function. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Keithley GPIB board at board
index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the method you created.

methods(obj)

Methods for class icdevice:

Contents error instrhwinfo open
class fieldnames instrnotify openvar
close get instrument propinfo
connect geterror invoke selftest
ctranspose horzcat isa set
delete icdevice isequal sim
devicereset igetfield isetfield size
disconnect inspect isvalid subsasgn
disp instrcallback length subsref
display instrfind methods vertcat
end instrfindall ne
eq instrhelp obj2mfile

Driver specific methods for class icdevice:

autoset configureWaveform getWaveform

3 View the help you wrote.

instrhelp(obj, 'getWaveform')
DATA = INVOKE(OBJ, 'getWaveform') transfers and scales the
waveform from the oscilloscope.

14-44

Functions

4 Connect to your instrument and execute the function.

connect(obj)

Configure the waveform that is going to be transferred.

invoke(obj, 'configureWaveform', 'CH1', 1, 500);

Transfer the waveform.

data = invoke(obj, 'getWaveform');

Analyze and view the waveform.

size(data)
ans =

500 1

plot(data)

5 Disconnect from your instrument and delete the object.

disconnect(obj)
delete([obj g])

14-45

14 The Instrument Driver Editor

Groups
A group may be used to set or query the same property on several elements, or
to query several related properties, at the same time. For example, all input
channels on an oscilloscope can be scaled to the same value with a single
command; or all current measurement setups can be retrieved and viewed
at the same time.

Topics in this section include

• “Group Components” on page 14-46

• “Examples of Groups” on page 14-47

Group Components
A group consists of one or more group objects. The objects in the group share
a set of properties and functions. Using these properties and functions you
can control the features of the instrument represented by the group. In
order for the group objects to control the instrument correctly, the group
must define a selection command for the group and an identification string
for each object in the group.

Selection Command
The selection command is an instrument command that configures the
instrument to use the capability or physical component represented by
the current group object. Note, the instrument might not have a selection
command.

Identification String
The identification string identifies an object in the group. The number of
identification strings listed by the group defines the number of objects in
the group. The identification string can be substituted into the instrument
commands written to the instrument.

When a group object instrument command is written to the instrument, the
following steps occur:

1 The selection command for the group is determined by the driver.

14-46

Groups

2 The identification string for the group object is determined by the driver.

3 If the selection command contains the string <ID>, it is replaced with the
identification string.

4 The selection command is written to the instrument. If empty, nothing is
written to the instrument.

5 If the instrument command contains the string <ID>, it is replaced with the
identification string.

6 The instrument command is written to the instrument.

Examples of Groups
This section includes several examples of groups, with steps to verify the code.

Example — Creating a One-Element
Group (p. 14-47)

Create a one-element group object.
You define and view the oscilloscope’s
trigger group information.

Example — Defining the Group
Object Properties for a One-Element
Group (p. 14-49)

Define group object properties for
a one-element group. You create
several properties for the trigger
group object of the first example.

Example — Creating a Four-Element
Group (p. 14-55)

Creates a four-element group object.
You define and view the oscilloscope’s
measurement group information.

Example — Defining the Group
Object Properties for a Four-Element
Group (p. 14-57)

Define group object properties
for a four-element group. You
create several properties for the
measurement group object of the
previous example.

Example — Creating a One-Element Group
This example combines the trigger capabilities of the Tektronix TDS 210
oscilloscope into a trigger group. The oscilloscope allows the trigger source
and slope settings to be configured. In the MATLAB instrument driver editor,

14-47

14 The Instrument Driver Editor

1 Select the Groups node in the tree.

2 Enter the group name, Trigger, in the New Group text field and click
Add.

3 Expand the Groups node to display all the defined groups.

4 Select the Trigger node in the tree.

5 Select the Definition tab.

Since the oscilloscope has only one trigger, there is not a command that
will select the current trigger. The Selection command text field will
remain empty.

6 Select the Help tab to finish defining the group behavior.

In the Help text field, enter Trigger is a trigger group. The
trigger group object contains properties that configure and
query the oscilloscope's triggering capabilities.

7 Click the Save button.

14-48

Groups

Verifying the Group Behavior. This procedure verifies the
group information defined. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Keithley GPIB board at board
index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the group you created. Note that the HwName property is the group
object identification string.

get(obj)
get(obj, 'Trigger')
HwIndex: HwName: Type: Name:
1 Trigger1 scope-trigger Trigger1

3 View the help.

instrhelp(obj, 'Trigger')
TRIGGER (object) (read only)
Trigger is a trigger group. The trigger group object contains
properties that configure and query the oscilloscope's triggering
capabilities.

4 Delete the objects.

delete([obj g])

Example — Defining the Group Object Properties for a
One-Element Group
This example defines the properties for the Trigger group object created in
the previous example. The Tektronix TDS 210 oscilloscope can trigger from
CH1 or CH2 when the data has a rising or falling slope.

First, the properties Source and Slope are added to the trigger group object.
In the MATLAB instrument driver editor,

14-49

14 The Instrument Driver Editor

1 Expand the Trigger group node to display the group object’s properties
and functions.

2 Select the Properties node to define the Trigger group object properties.

3 Enter the property name Source in the Add property text field and click
the Add button

4 Enter the property name Slope in the Add property text field and click
the Add button.

5 Expand the Properties node to display the group object’s properties.

Next, define the behavior of the Source property:

1 Select the Source node in the tree.

2 Select the Code tab to define the set and get commands for the Source
property.

• Select Instrument Commands in the Property style field.

• Enter TRIGger:MAIn:EDGE:SOUrce? in the Get command text field.

• Enter TRIGger:MAIn:EDGE:SOUrce in the Set command text field.

3 Select the Property Values tab to define the allowed property values.

• Select String in the Data Type field.

• Select Enumeration in the Constraint field.

• Enter CH1 in the Add property value text field and click the Add
button. Then enter CH1 in the Instrument Value table field.

• Similarly, add the enumeration: CH2, CH2.

14-50

Groups

4 Select the General tab to finish defining the property behavior.

• Enter CH1 in the Default value text field.

• Select never in the Read only field.

• In the Help text field, enter Specifies the source for the main
edge trigger.

Next, define the behavior of the Slope property:

1 Select the Slope node in the tree.

2 Select the Code tab to define the set and get commands for the Slope
property.

• Select Instrument Commands in the Property style field.

• Enter TRIGger:MAIn:EDGE:SLOpe? in the Get command text field.

• Enter TRIGger:MAIn:EDGE:SLOpe in the Set command text field.

3 Select the Property Values tab to define the allowed property values.

• Select String in the Data Type field.

• Select Enumeration in the Constraint field.

• Enter falling in the Add property value text field and click the Add
button. Then enter FALL in the Instrument Value table field.

• Similarly add the enumeration: rising, RISe.

14-51

14 The Instrument Driver Editor

4 Select the General tab to finish defining the property behavior.

• Enter falling in the Default value text field.

• Select never in the Read only field.

• In the Help text field, enter Specifies a rising or falling slope
for the main edge trigger.

5 Click the Save button.

Verifying Properties of the Group Object in MATLAB. This procedure
verifies the properties of the Trigger group object. In this example, the driver
name is tektronix_tds210_ex.mdd. Communication with the Tektronix TDS
210 oscilloscope at primary address 2 is done via a Keithley GPIB board at
board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

14-52

Groups

2 Extract the trigger group objects, t, from the device object.

t = get(obj, 'Trigger')
HwIndex: HwName: Type: Name:
1 Trigger1 scope-trigger Trigger1

3 View the current values for the properties of the trigger group object.
Calling get on the object lists all its properties.

get(t)

4 Calling get on a specific property lists its current value.

get(t, {'Source', 'Slope'})
ans =

'CH1' 'falling'

5 View the acceptable values for the properties of the group object. Calling
set on the object lists all its settable properties.

set(t)

6 Calling set on a specific property lists the values to which you can set
the property.

set(t, 'Source')
[{CH1} | CH2]

set(t, 'Slope')
[{falling} | rising]

7 Try setting the property to valid and invalid values.

set(t, 'Source', 'CH2', 'Slope', 'rising')
get(t, {'Source', 'Slope'})
ans =

'CH2' 'rising'
set(t, 'Source', 'CH3')
??? The 'CH3' enumerated value is invalid.
set(t, 'Slope', 'steady')
??? The 'steady' enumerated value is invalid.

14-53

14 The Instrument Driver Editor

8 View the help you wrote.

instrhelp(t, 'Source')
SOURCE [{CH1} | CH2]
Specifies the source for the main edge trigger.

instrhelp(t, 'Slope')
SLOPE [{falling} | rising]
Specifies a rising or falling slope for the main edge trigger.

9 List the group object characteristics that you defined in the Property
Values and General tabs.

propinfo(t, 'Source')
ans =

Type: 'string'
Constraint: 'enum'

ConstraintValue: {2x1 cell}
DefaultValue: 'CH1'

ReadOnly: 'never'
InterfaceSpecific: 1

propinfo(t, 'Slope')
ans =

Type: 'string'
Constraint: 'enum'

ConstraintValue: {2x1 cell}
DefaultValue: 'falling'

ReadOnly: 'never'
InterfaceSpecific: 1

10 Connect to your instrument to verify the set and get code.

connect(obj)

Note When you issue the get function on the Source property for the
trigger object, the textronix_tds210_ex.mdd driver actually sends the
TRIGger:MAIn:EDGE:SOUrce? command to the instrument.

14-54

Groups

get(t, 'Source')
ans =
CH1

Note When you issue the set function on the Slope property for the
trigger object, the textronix_tds210_ex.mdd driver actually sends the
TRIGger:MAIn:EDGE:SLOpe RISe command to the instrument.

set(t, 'Slope', 'rising')

11 Disconnect from your instrument and delete the objects.

disconnect(obj)
delete([obj g])

Example — Creating a Four-Element Group
This example combines the measurement capabilities of the Tektronix TDS
210 oscilloscope into a measurement group. The oscilloscope allows four
measurements to be taken at a time. In the MATLAB instrument driver
editor,

1 Select the Groups node in the tree.

2 Enter the group name, Measurement, in the Add group text field and
click Add.

3 Expand the Groups node to display all the defined groups.

4 Select the Measurement node in the tree.

5 Select the Definition tab.

• The oscilloscope does not define an instrument command that will define
the measurement that is currently being calculated. The Selection
command text field will remain empty.

• In the Identifier Name listing, change Measurement1 to Meas1 to
define the identification string for the first measurement group object
in the group.

14-55

14 The Instrument Driver Editor

• Enter the identifiers Meas2, Meas3, and Meas4 for the remaining
measurement group objects by typing each in the Identifier text field
and clicking Add after each.

6 Select the Help tab to finish defining the group behavior.

• In the Help text field, enter Measurement is an array of
measurement group objects. A measurement group object
contains properties related to each supported measurement on
the oscilloscope.

7 Click the Save button.

Verifying the Group Behavior. This procedure verifies the
group information defined. In this example, the driver name is
tektronix_tds210_ex.mdd. Communication with the Tektronix TDS 210
oscilloscope at primary address 2 is done via a Keithley GPIB board at board
index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 View the group you created. Note that the HwName property is the group
object get(obj).

14-56

Groups

get(obj, 'Measurement')

HwIndex: HwName: Type: Name:
1 Meas1 scope-measurement Measurement1
2 Meas2 scope-measurement Measurement2
3 Meas3 scope-measurement Measurement3
4 Meas4 scope-measurement Measurement4

3 View the help.

instrhelp(obj, 'Measurement')
MEASUREMENT (object) (read only)
Measurement is an array of measurement group objects. A
measurement group object contains properties related to each
supported measurement on the oscilloscope.

4 Delete the objects.

delete([obj g])

Example — Defining the Group Object Properties for a
Four-Element Group
This example defines the properties for the Measurement group object created
in the previous example. The Tektronix TDS 210 oscilloscope can calculate
the frequency, mean, period, peak to peak value, root mean square, rise
time, fall time, positive pulse width, or negative pulse width of the waveform
of Channel 1 or Channel 2.

First, the properties MeasurementType, Source, Value, and Units will be
added to the Measurement group object.

1 Expand the Measurement group node to display the group object’s properties
and methods.

2 Select the Properties node to define the Measurement group object
properties.

3 Enter the property name MeasurementType in the Add property text field
and click the Add button.

14-57

14 The Instrument Driver Editor

4 Enter the property name Source in the Add property text field and click
the Add button.

5 Enter the property name Value in the Add property text field and click
the Add button.

6 Enter the property name Units in the Add property text field and click
the Add button.

7 Expand the Properties node to display the group object’s properties.

Next, define the behavior of the MeasurementType property:

1 Select the MeasurementType node in the tree.

2 Select the Code tab to define the set and get commands for the
MeasurementType property.

• Select Instrument Commands in the Property style field.

• Enter Measurement:<ID>:Type? in the Get command text field.

• Enter Measurement:<ID>:Type in the Set command text field.

3 Select the Property Values tab to define the allowed property values.

14-58

Groups

• Select String in the Data Type field.

• Select Enumeration in the Constraint field.

• Enter frequency in the Add property value text field and click the
Add button. Then enter FREQuency in the Instrument Value table field.

• Add the enumeration: mean, MEAN.

• Add the enumeration: period, PERIod.

• Add the enumeration: pk2pk, PK2pk.

• Add the enumeration: rms, CRMs.

• Add the enumeration: riseTime, RISe.

• Add the enumeration: fallTime, FALL.

• Add the enumeration: posWidth, PWIdth.

• Add the enumeration: negWidth, NWIdth.

• Add the enumeration: none, NONE.

14-59

14 The Instrument Driver Editor

4 Select the General tab to finish defining the property behavior.

• Enter none in the Default value text field.

• Select never in the Read only field.

• In the Help text field, enter Specifies the measurement type.

Next, define the behavior of the Source property.

1 Select the Source node in the tree.

14-60

Groups

2 Select the Code tab to define the set and get commands for the Source
property.

• Select Instrument Commands in the Property style field.

• Enter Measurement:<ID>:Source? in the Get command field.

• Enter Measurement:<ID>:Source in the Set command field.

3 Select the Property Values tab to define the allowed property values.

• Select String in the Data Type field.

• Select Enumeration in the Constraint field.

• Enter CH1 in the Add property value text field and click the Add
button. Then enter CH1 in the Instrument Value table field.

• Similarly add the enumeration: CH2, CH2.

4 Select the General tab to finish defining the property behavior.

• Enter CH1 in the Default value text field.

• Select never in the Read only field.

• In the Help text field, enter Specifies the source of the
measurement.

Next, define the behavior of the Units property.

1 Select the Units node in the tree.

2 Select the Code tab to define the set and get commands for the Units
property.

• Select Instrument Commands in the Property style field.

• Enter Measurement:<ID>:Units? in the Get command text field.

• Since the Units property is read-only, leave the Set command text
field empty.

14-61

14 The Instrument Driver Editor

3 Select the Property Values tab to define the allowed property values.

• Select String in the Data Type field.

• Select None in the Constraint field.

4 Select the General tab to finish defining the property behavior.

• Enter volts in the Default value text field.

• Select always in the Read only field.

• In the Help text field, enter Returns the measurement units.

Finally, define the behavior of the Value property.

1 Select the Value node in the tree.

2 Select the Code tab to define the set and get commands for the Value
property.

• Select Instrument Commands in the Property style field.

• Enter Measurement:<ID>:Value? in the Get command text field.

• Since the Value property is read-only, leave the Set command text
field empty.

3 Select the Property Values tab to define the allowed property values.

• Select Double in the Data Type field.

• Select None in the Constraint field.

4 Select the General tab to finish defining property behavior.

• Enter 0 in Default value field.

• Select always in the Read only field.

• In the Help text field, enter Returns the measurement value.

5 Click the Save button.

14-62

Groups

Verifying the Properties of the Group Object in MATLAB. This
procedure verifies the properties of the measurement group object. In this
example, the driver name is tektronix_tds210_ex.mdd. Communication
with the Tektronix TDS 210 oscilloscope at primary address 2 is done via a
Keithley GPIB board at board index 0. From the MATLAB command line,

1 Create the device object, obj, using the icdevice function.

g = gpib('keithley', 0, 2);
obj = icdevice('tektronix_tds210_ex.mdd', g);

2 Extract the measurement group objects, m, from the device object.

m = get(obj, 'Measurement')

HwIndex: HwName: Type: Name:
1 Meas1 scope-measurement Measurement1
2 Meas2 scope-measurement Measurement2
3 Meas3 scope-measurement Measurement3
4 Meas4 scope-measurement Measurement4

3 View the current values for the properties of the first group object. Calling
get on the object lists all its properties.

get(m(1))

4 Calling get on a specific property lists its current value.

get(m(1), {'MeasurementType', 'Source', 'Units', 'Value'})

ans =
'none' 'CH1' 'volts' [0]

5 View the acceptable values for the properties of the group object. Calling
set on the object lists all its settable properties.

set(m(1))

set(m(1), 'MeasurementType')
[frequency | period | {none} | mean | pk2pk | rms | riseTime |
fallTime | posWidth | negWidth]

14-63

14 The Instrument Driver Editor

set(m(1), 'Source')
[{CH1} | CH2]

6 Try setting the property to valid and invalid values.

set(m(1), 'Source', 'CH2')
get(m(1), 'Source')
ans =
CH2
set(m(1), 'Source', 'CH5')
??? The 'CH5' enumerated value is invalid.

7 View the help you wrote.

instrhelp(m(1), 'Value')
VALUE (double) (read only)
Returns the measurement value.

8 List the group object characteristics that you defined in the Property
Values and General tabs.

propinfo(m(1), 'Units')
ans =

Type: 'string'
Constraint: 'none'

ConstraintValue: []
DefaultValue: 'volts'

ReadOnly: 'always'
InterfaceSpecific: 1

9 Connect to your instrument to verify the set and get code.

connect(obj)

Note When you issue the get function on the MeasurementType property for
the first measurement object in the group, the textronix_tds210_ex.mdd
driver actually sends the Measurement:Meas1:Type? command to the
instrument.

get(m(1), 'MeasurementType')

14-64

Groups

ans =
frequency

Note When you issue the set function on the Source property for the
second measurement object in the group, the textronix_tds210_ex.mdd
driver actually sends the Measurement:Meas2:Source CH2 command to
the instrument.

set(m(2), 'Source', 'CH2')

10 Disconnect from your instrument and delete the objects.

disconnect(obj)
delete([obj g])

14-65

14 The Instrument Driver Editor

Using Existing Drivers

Modifying MATLAB Instrument Drivers
If a MATLAB instrument driver does not exist for your instrument, it may
be that a MATLAB instrument driver for an instrument similar to yours
does exist. Rather than creating a new MATLAB instrument driver, you may
choose to edit an existing MATLAB instrument driver. An existing MATLAB
instrument driver can be opened in the MATLAB instrument driver editor
with the midedit function.

midedit('drivername')

Deleting an Existing Property, Function, or Group

1 Select the property, function, or group in the tree.

2 Select the Edit menu.

3 Select the Delete menu item.

Renaming an Existing Property, Function, or Group

1 Select the property, function, or group in the tree.

2 Select the Edit menu.

3 Select the Rename menu item.

Other Settings and Tasks
Refer to “Creating MATLAB Instrument Drivers” on page 14-5 for information
on

• Defining summary information

• Defining initialization and cleanup code

• Creating a new property

14-66

Using Existing Drivers

• Creating a new function

• Creating a new group

Importing VXIplug&play and IVI Drivers
The MATLAB Instrument Driver Editor can import a VXIplug&play or IVI
driver. You can evaluate or set the driver’s functions and properties, and the
modified driver can be saved for further use:

1 Open the MATLAB Instrument Driver Editor with midedit.

2 Click the File menu, and select Import.

The Import Driver dialog box appears, showing the installed
VXIplug&play and IVI drivers.

3 Select the desired driver and click Import.

The MATLAB Instrument Driver Editor creates a MATLAB instrument
driver based on the properties and/or functions in the original VXIplug&play
or IVI driver. The editor displays the new driver’s summary information,
groups, properties, and functions.

With the MATLAB Instrument Driver Editor, you can

• Create, delete, modify, or rename properties, functions, or groups

• Add M-code around instrument commands for analysis

14-67

14 The Instrument Driver Editor

• Add create, connect, and disconnect code

• Save the driver as a separate MATLAB VXIplug&play instrument driver
or MATLAB IVI instrument driver

14-68

15

The Instrument Driver
Testing Tool

This chapter describes how to use the Instrument Driver Testing Tool to verify
the functionality of your instrument drivers. The sections are as follows.

Overview (p. 15-2) An explanation of the MATLAB
Instrument Driver Testing Tool, its
capabilities, and usage.

Setting Up Your Test (p. 15-5) Providing global information for your
test, including name, description,
driver, interface, and preferences.

Defining Test Steps (p. 15-11) Creating steps to test setting
property values, getting property
values, and driver functions.

Saving Your Test (p. 15-25) Saving your test for future midtest
sessions, or as M-code, or as a driver
function.

Testing and Results (p. 15-27) Running a complete or partial test;
exporting or saving test results.

15 The Instrument Driver Testing Tool

Overview
This section provides an overview of the MATLAB Instrument Driver Testing
Tool and examples showing its capabilities and usage.

The MATLAB Instrument Driver Testing Tool provides a graphical
environment for creating a test to verify the functionality of a MATLAB
instrument driver.

The MATLAB Instrument Driver Testing Tool provides a way to

• Verify property behavior

• Verify function behavior

• Save the test as a test file, MATLAB code, or driver function

• Export the test results to MATLAB workspace, figure window, MAT-file, or
the MATLAB array editor

• Save test results as an HTML page

Drivers
The MATLAB Instrument Driver Testing Tool can be used to test any
MATLAB instrument driver. These include

• MATLAB interface drivers

• MATLAB VXIplug&play drivers

• MATLAB IVI drivers

MATLAB VXIplug&play drivers and MATLAB IVI drivers can be created
from VXIplug&play and IVI drivers, respectively, using the MATLAB
Instrument Driver Editor or the makemid function.

Test Structure
The driver test structure is composed of setup information and test steps.

15-2

Overview

Setup
When setting up or initializing the test, you provide a test name and
description, identify the driver to test, define the interface to the instrument,
and set the test preferences. This information remains unchanged throughout
the execution of the test, and applies to every step.

Test Steps
The executable portion of the test is divided into any number of test steps.
A test step can perform one of four verifications:

• Set property — Verify that the set command or set code of a single device
object or group object property in the driver does not error, and that the
driver supports the defined range for the property value. You can use one
value or all supported values for the property. You may also use invalid
property values to check the driver’s response.

• Get property — Verify the reading of a single device object or group object
property from the driver.

• Properties sweep — Verify several properties in a single step.

• Function — Verify the execution of a driver function.

After configuring your test steps, you can execute the steps individually, or
run a complete test that executes all the steps in the test.

Starting
You start the MATLAB Instrument Driver Testing Tool by typing the
MATLAB command

midtest

This opens the tool without any test file loaded.

You may specify a test file (usually created in an earlier session of the tool)
when you start the tool so that it opens up with a test file already loaded.

midtest('MyDriverTestfile')

15-3

15 The Instrument Driver Testing Tool

Example
For the examples in this chapter, you will create a test for the Tektronix
TDS210 oscilloscope driver that you created in Chapter 14, “The Instrument
Driver Editor”.

You will create each kind of step in your test: set property, get property, sweep
properties, and function.

15-4

Setting Up Your Test

Setting Up Your Test

The Test File
You can specify a test file to load when you start midtest, open a test file after
the MATLAB Instrument Driver Testing Tool is already up, or create a new
test. You may find it convenient to keep the driver and test file together in the
same directory. For easy use in the MATLAB Command Window, you can put
that directory in the MATLAB path with the addpath command.

Providing a Name and Description
The Name field allows a one-line text definition for your test. This name
appears in the header of the test results in the Output Window.

The Description field allows a full definition of the text with as much
descriptive text as you need.

Specifying the Driver
In the Driver text field, you specify the driver to be tested. This is any
MATLAB instrument driver, usually with the .mdd extension. Enter the full
pathname to the driver, or use the Browse button to navigate to the driver’s
directory.

Specifying an Interface
You specify the interface with the instrument for the testing of the driver.
The instrument object type may be GPIB, VISA, TCPIP, UDP, or serial port.
Depending on the type you choose, the New Object Creation dialog box
prompts you for further configuration information.

The tool then creates a device object based on interface and driver.

Setting Test Preferences
The Test Preferences dialog box allows you to set certain behaviors of the
tool when running a test.

15-5

15 The Instrument Driver Testing Tool

Run Mode
This specifies whether the test runs all the steps or only one step in the test.

Fail Action
This specifies what happens if a step within the test fails. The test may stop
after the failed step or continue, with or without resetting the instrument.

No-error String
This field specifies the expected string returned from the instrument
when there is no error. If you indicate that a step passes when no error is
returned from the instrument, the tool compares the string returned from
the instrument via the geterror function, to the string given here in the
Preferences dialog box. If the strings match, then the tool assumes there is no
error from the instrument.

Number of Values to Test
A double-precision property can be tested using all supported values. You can
request this when testing it as a single step, or the tool does it automatically
when the property is tested as part of a property sweep step. This field
specifies how many values are tested for such a property.

The number of values includes the defined minimum and maximum for the
property, and integer values equally spaced between these limits.

If your property requires noninteger values for testing, then create a separate
test step for that property instead of including it in a sweep.

Example — Setting Up a Driver Test
This example identifies the driver to be tested, and defines global setup
information for the test. You will be testing the driver created in the examples
of Chapter 14, “The Instrument Driver Editor”

1 Open the MATLAB Instrument Driver Testing Tool from the command line
with the command midtest.

15-6

Setting Up Your Test

2 In the Name text field, enter TDS 210 Driver Sample Test.

3 In the Description text field, enter A test to check some of the
properties and functions of the TDS 210 oscilloscope driver.

4 In the Driver field, enter the name of the driver you created in Chapter
14, “The Instrument Driver Editor”. The text field will display the whole
pathname, with the driver file tektronix_tds210_ex.mdd.

5 Click the Create button to create an instrument interface.

15-7

15 The Instrument Driver Testing Tool

6 In the New Object Creation dialog box,

1 Select your Instrument object type, Vendor, Board index, and
Primary address of your instrument.

The example illustrations in this chapter use a CEC GPIB board with
index 0 and the instrument at address 4. Your configuration may be
different.

2 Click OK.

7 Click the File menu and select Test Preferences.

15-8

Setting Up Your Test

8 In the Test Preferences dialog box,

1 For Select run mode, click Run all steps.

2 For Select fail action, click Continue test.

3 For Message returned from instrument when no error occurred,
enter "". (This is an empty string in double quotes.)

4 For Number of values to test for double properties, enter 5.

5 Click OK.

15-9

15 The Instrument Driver Testing Tool

The MATLAB Instrument Driver Testing Tool now displays all your setup
information.

9 Click File and select Save. Enter tektronix_tds210_ex_test as the
filename for your test. The tool automatically adds the .xml file extension.

15-10

Defining Test Steps

Defining Test Steps

Test Step: Set Property
You use a set property test step to verify a driver’s set code or set command for
a property. You provide a name for the step, select the driver property to test
and the values to test it with, and define the conditions for the step’s passing.

Settings

Name. You provide a name for each test step. The name appears in the Test
Explorer tree as well as in the results output.

Property to Test. A set property step can test only one property. You choose
the property from the Property to Test list. Additional properties can be
tested with additional steps, or with a sweep step.

Object(s) to Test. A property may be defined for the instrument or for a
group object. If you are testing a group object property, you select which object
you want tested in the Object(s) to Test list.

Define the Values to Test. If the property is has enumerated values, you
can select one of the defined values, all of the supported values, or some other
value. If the property’s value is a double-precision number, you can select a
value within its defined range, all supported values, or some other value. For
a double, you set the number of values tested for all supported values in the
Preferences dialog box (see “Number of Values to Test” on page 15-6).

Select When this Step Passes. The step passes when one or both of two
conditions are met:

• If no instrument or MATLAB error occurs as a result of attempting to set
the property with its test value

• If a query of the property after it is set returns a specified value

If you select more than one of these conditions, then both conditions must be
met for the step to pass. If no boxes are selected, the test will pass.

15-11

15 The Instrument Driver Testing Tool

Example — Creating a Test Step: Set Property

1 Click the Set Property option in the Test Steps list box.

2 Click the Add button.

3 In the Name field, enter Set Display Contrast.

4 In the Property to test list, select DisplayContrast.

5 For Define the value(s) to test, select All supported values.

6 For Select when this step passes,

• Select If no MATLAB or instrument error occurs.

• Select If current value matches configured value.

15-12

Defining Test Steps

7 Click File and select Save.

Running a Test Step to Set a Property
You can run an individual test step to verify its behavior:

1 Select Set Display Contrast in the Test Explorer tree.

2 With the cursor on the selected name, right-click to bring up the context
menu.

3 In the context menu, select Run this step only.

You may want to repeat this step as you observe the oscilloscope display.
The test sets the display contrast to five different values: lowest acceptable
value (1%), highest acceptable value (100%), and three approximately equally
spaced integer values between these limits.

The tool automatically displays the Output Window with the test results.

15-13

15 The Instrument Driver Testing Tool

This test step passed because, for each of the five display contrast settings,
the tool read back a value that was equal to the configured value.

Test Step: Get Property
You use a get property test step to verify a driver’s ability to read a property.
You provide a name for the step, select the driver property to test, and define
the conditions for the step’s passing.

Settings
The settings for the get property step are the same as for a “Test Step: Set
Property” on page 15-11, except that instead of providing a value to write, you
can provide an output argument variable.

15-14

Defining Test Steps

Output Argument. The test step assigns the optional output argument
variable the value that results from reading the property. The variable is
available for “Exporting Results” on page 15-29, after the test step has
executed.

Example — Creating a Test Step: Get Property

1 Click the Get Property option in the Test Step field.

2 Click the Add button.

3 In the Name field, enter Getting Display Contrast.

4 In the Property to test list, select DisplayContrast.

5 In the Output argument field, enter DispContr.

6 For Select when this step passes,

• Unselect the box for If no MATLAB or instrument error occurs.

• Select If property value is, and enter a value of 80.

This value is chosen to generate a failure. If this step follows the
previous step in the example, the display contrast is still set at 100. If
this step is run by itself, the display contrast is set to 50 by the *RST
command that is executed as part of your connect code for the driver.

15-15

15 The Instrument Driver Testing Tool

7 Click File and select Save.

15-16

Defining Test Steps

Running a Test Step to Get a Property
You run the individual test step to verify its behavior.

1 Select Get Display Contrast in the Test Explorer tree.

2 With the cursor on the selected name, click the right mouse button to bring
up the context menu.

3 In the context menu, select Run this step only.

Note that the test fails, reading a value of 50 while expecting a value of 80.

Test Step: Properties Sweep
A properties sweep step allows you to test several properties in a single step.
All selected properties are tested for all supported values. (In the case of
properties with double-precision values, you determine the “Number of Values
to Test” on page 15-6, in the Test Preferences dialog box.)

15-17

15 The Instrument Driver Testing Tool

Settings
The fields for name and passing conditions are the same as other types of
test steps. The sweep step also requires that you select which properties
and groups to test.

Select the Properties to Test. You may select any or all of the properties for
testing in a sweep step. You may find it convenient to create several sweep
steps for testing related groups properties together.

Select the Group Object to Use on Sweep. For those properties defined
for group objects, you can select a particular group object to test, or all the
group objects. You can also define different sweep steps for different group
objects.

Example — Creating a Sweep Step to Test All Properties

1 Click the Properties Sweep option in the Test Step field.

2 Click the Add button.

3 In the Name field, enter All Properties Sweep.

4 For Select the properties to test, click Select All.

5 In the Select the group object(s) field,

• For the Measurement group, select All Measurement group objects.

• For the Trigger group, select All Trigger group objects.

6 For Select when this step passes,

• Select If no MATLAB or instrument error occurs, and

• Select If current value matches configured value

7 Click File and select Save.

15-18

Defining Test Steps

Running a Sweep Step to Test All Properties
You run the sweep test step to verify its behavior.

1 Select All Properties Sweep in the Test Explorer tree.

2 With the cursor on the selected name, click the right mouse button to bring
up the context menu.

3 In the context menu, select Run this step only.

15-19

15 The Instrument Driver Testing Tool

The Output Window is updated as each property in the sweep is tested.
Note that the entire sweep is only one step in the overall test.

15-20

Defining Test Steps

Test Step: Function
A function test step sends a function call to the instrument. You select the
function called, the input data and output arguments (if required), and the
conditions for passing.

Settings

Name. You provide a name for each test step. The name appears in the Test
Explorer tree as well as in the results output.

Function to test. A function step can test only one function. You choose the
function from the Function to test list. Additional functions can be tested
with additional steps.

Function definition. The tool displays below the selected function what the
call command for the function looks like. This helps you when deciding what
input and output arguments to supply.

Input argument(s) and Output argument(s). You provide input
arguments as a comma-separated list of data, strings, or whatever the
function is expecting.

You provide output argument variable for any data returned from the function.
The output arguments can be used to determine if the test step passes, or for
“Exporting Results” on page 15-29 after the test step has executed.

Select when this step passes. The step passes when any of three
conditions is met:

• If no instrument or MATLAB error occurs as a result of attempting to
execute the function

• If the returned output arguments match expected values

• If the output of a specified function is true

If you select more than one of these conditions, then all selected conditions
must be met for the step to pass. If no boxes are selected, the test will pass.

15-21

15 The Instrument Driver Testing Tool

Example — Creating a Test Step: Function

1 Click the Function option in the Test Step field.

2 Click the Add button.

3 In the Name field, enter Config Waveform.

4 In the Function to test list, select configureWaveform.

5 In the Input argument(s) field, type 'CH1', 1, 3000.

6 In the Output argument(s) field, type Channel, StartAdr, StopAdr.

7 For Select when this step passes,

• Select If no MATLAB or instrument error occurs.

• Select If output arguments are, and enter in its field 'CH1', 1, 2500.

• Unselect If output of function ... is true.

8 Click File and select Save.

Note that you set the input argument for the stop address to 3000, but you set
the expected value for its output argument, StopAdr, to 2500. This is because
the maximum address of the oscilloscope is 2500. If you attempt to exceed
that value, the oscilloscope address is set to the maximum.

15-22

Defining Test Steps

15-23

15 The Instrument Driver Testing Tool

Running a Test Step to Test a Function
You can run an individual test step to verify its behavior

1 Select Config Waveform in the Test Explorer tree.

2 With the cursor on the selected name, click the right mouse button to bring
up the context menu.

3 In the context menu, select Run this step only.

15-24

Saving Your Test

Saving Your Test

Saving the Test File
In the preceding examples of this chapter, you have been saving the test file
after creating each step. The test file is saved in XML format.

Saving the Test as M-Code
You save the test file as M-code by clicking the File menu and selecting Save
Test as M-Code.

You can execute the test by calling this M-file from the MATLAB command
line.

For example, you can save the test file you created in this chapter as
tektronix_tds210_ex_test.m. Then you execute the test from the MATLAB
command line by typing

tektronix_tds210_ex_test

The test results are displayed in the MATLAB Command Window.

Saving the Test as a Driver Function
You save your test as a driver function by clicking the File menu and selecting
Save Test as Driver Function.

When you enter a name for the driver test function, the invoke command at
the bottom of the dialog box reflects that name. You use that invoke command
to execute the driver function from the MATLAB command line or in an M-file.

15-25

15 The Instrument Driver Testing Tool

Example — Creating a Driver Test Function

1 Click the File menu and select Save Test as Driver Function.

2 Enter drivertest in the Specify the driver function name field.

3 Click OK.

A function called drivertest is created and saved as part of the instrument
driver file. You can open the driver file in the MATLAB Instrument Driver
Editor tool (midedit) to verify that the drivertest function is included.

Example — Calling a Driver Test Function from MATLAB
Now that the test function is included in the driver, you access it with the
invoke command from the MATLAB command line.

In the MATLAB Command Window,

1 Create an interface object.

g = gpib('cec',0,4)

2 Create a device object, specifying the driver with the drivertest function
saved in it.

obj = icdevice('tektronix_tds210_ex.mdd',g)

3 Connect to the device.

connect(obj)

4 Execute the driver test.

out = invoke(obj, 'drivertest')

5 When the test is complete, disconnect from the instrument and delete the
objects.

disconnect(obj)
delete ([g obj])

15-26

Testing and Results

Testing and Results

Running All Steps
So far in this chapter, you have only run individual test steps after each was
created.

When you run the entire test, all the test steps run in the order listed in the
Test Explorer tree. Using the mouse, you may drag the nodes of the tree to
alter their sequence.

The Output Window displays the results of each step, along with a final
result of the complete test.

Example — Running a Complete Test

1 Select Get Display Contrast in the Test Explorer tree.

2 In the Select when this step passes field, change the If property value
is entry from 80 to 100.

Earlier you entered a value of 80 to illustrate what a failure looks like. The
display contrast is left at 100 from the Set Display Contrast test step,
so that is what you will test for in the next step.

3 Click File and select Save.

4 Click the green arrow button to start a test run.

15-27

15 The Instrument Driver Testing Tool

15-28

Testing and Results

Partial Testing
Using the context menu in the Test Explorer tree, you can run a partial
test of either an individual test step, or from the chosen test step through
the end of the test.

Exporting Results
You can export the test results to many locations:

• MATLAB workspace

• MATLAB figure window

• MAT-file

• MATLAB Array Editor

The results you can export are those assigned to output variables in the
settings for a test step.

Example — Exporting Test Results to the MATLAB Workspace

1 Click the File menu and select Export Test Results.

2 In the Test Results Exporter dialog box, select MATLAB Workspace as the
Data destination.

By default, all the variables are selected. You may unselect any.

3 Click the Export button.

15-29

15 The Instrument Driver Testing Tool

The variables are now available in the MATLAB workspace, with values
that were established by the test run.

Saving Results
You save your test results in an HTML file by clicking the File menu and
selecting Save Test Results. The format of the results in this file reflects
their appearance in the tester tool’s Output Window.

15-30

16

Using the Instrument
Control Toolbox Block
Library

The Instrument Control Toolbox includes a Simulink® interface called the
Instrument Control Toolbox block library. You can use the blocks of this
library in a Simulink model to communicate with an instrument.

Overview (p. 16-2) Introduces the Instrument Control
Toolbox block library

Example: Sending and Receiving
Data Through a Serial Port Loopback
(p. 16-3)

Provides a simple example of using
the library in a model

16 Using the Instrument Control Toolbox Block Library

Overview
This chapter describes how to use the Instrument Control Toolbox block
library.

The Instrument Control Toolbox block library is a tool for sending live data
from your model to an instrument, or querying an instrument to receive live
data into your model. You use blocks from the block library with blocks from
other Simulink libraries to create sophisticated models.

The Instrument Control Toolbox block library requires Simulink, a tool for
simulating dynamic systems. Simulink is a model definition environment.
Use Simulink blocks to create a block diagram that represents the
computations of your system or application. Simulink is also a model
simulation environment. Run the block diagram to see how your system
behaves. If you are new to Simulink, read “Getting Started with Simulink” in
the Simulink documentation to better understand its functionality.

The best way to learn about the Instrument Control Toolbox block library is
to see an example. “Example: Sending and Receiving Data Through a Serial
Port Loopback” on page 16-3 provides a simple example. For more detailed
information about the blocks in the Instrument Control Toolbox block library,
see Chapter 21, “Blocks — Alphabetical List”.

16-2

Example: Sending and Receiving Data Through a Serial Port Loopback

Example: Sending and Receiving Data Through a Serial
Port Loopback

To illustrate how to use the Instrument Control Toolbox block library, this
section provides a step-by-step example. The example builds a simple model
using the blocks in the block library in conjunction with blocks from other
Simulink libraries.

The instrument in this example is a simple loopback device connected to the
computer’s COM1 serial port. You will use the To Instrument block to send
data to the instrument from your model, and then use the Query Instrument
block to read that same data back into your model.

The steps described in this example include

• “Step 1: Open the Block Library” on page 16-4

• “Step 2: Create a New Model” on page 16-5

• “Step 3: Drag the Instrument Control Toolbox Blocks into the Model” on
page 16-6

• “Step 4: Drag Other Blocks to Complete the Model” on page 16-7

• “Step 5: Connect the Blocks” on page 16-9

• “Step 6: Specify the Block Parameter Values” on page 16-10

• “Step 7: Run the Simulation” on page 16-12

16-3

16 Using the Instrument Control Toolbox Block Library

Step 1: Open the Block Library
To open the Instrument Control block library, start the Simulink Library
Browser and choose the Instrument Control Toolbox from the list of available
libraries displayed in the browser.

To start the Simulink Library Browser, enter

simulink

at the MATLAB prompt. MATLAB opens the Simulink Library Browser
window. The left pane contains a list of available libraries in alphabetical
order. To open the Instrument Control Toolbox block library, click its entry in
the tree. When you open a library, Simulink loads the library and displays the
blocks in the library.

Selecting the Library in the Simulink Library Browser

16-4

Example: Sending and Receiving Data Through a Serial Port Loopback

Step 2: Create a New Model
To use a block, you must add it to an existing model or create a new model.

To create a new model, click the File menu in the Simulink Library Browser
and select New > Model. Simulink opens an empty model window on the
display. To assign the new model a name, use the Save option.

16-5

16 Using the Instrument Control Toolbox Block Library

Step 3: Drag the Instrument Control Toolbox Blocks
into the Model
The Instrument Control Toolbox block library contains two blocks: To
Instrument and Query Instrument. You can use these blocks to send and
receive live data between your instruments and your simulation.

To use the blocks in a model, click each block in the library and, holding the
mouse button down, drag it into the model window. You will need one instance
of each block in your model.

Drag Instrument Control Toolbox Blocks into Model Window

16-6

Example: Sending and Receiving Data Through a Serial Port Loopback

Step 4: Drag Other Blocks to Complete the Model
Your model requires two more blocks. One block provides the data that is
sent to the instrument; the other block displays the data received from the
instrument.

Because the data sent to the instrument will be a constant, you can use the
Constant block for this purpose. To access the Constant block, expand the
Simulink node in the browser tree, and click on the Source library entry. From
the blocks displayed in the right pane, drag the Constant block into the model
and place it to the left of the To Instrument block.

Drag Constant Block to Model Window

To display the data received from the instrument, you can use the Display
block. To access the Display block, click the Sinks library entry in the
expanded Simulink node in the browser tree. From the blocks displayed in

16-7

16 Using the Instrument Control Toolbox Block Library

the right pane, drag the Display block into the model and place it to the right
of the Query Instrument block.

Drag Display Block to Model Window

16-8

Example: Sending and Receiving Data Through a Serial Port Loopback

Step 5: Connect the Blocks
Make a connection between the Constant block and the To Instrument block.
When you move the cursor near the output port of the Constant block, the
cursor become a cross hair. Click on the Constant output port and hold the
mouse button, drag to the input port of the To Instrument block, and release
the button.

In the same way, make the connection between the output port of the Query
Instrument block and the input port of the Display block.

Note that the two Instrument Control Toolbox blocks do not directly connect
together within the model. The only communication between them is through
the instrument, which is the loopback connected to the COM1 serial port.
Because there is no direct connection between these two blocks, you must
consider their timing when running the model. The Query Instrument block
does not get its input from the To Instrument block, so it has no way to know
when the data from the instrument is available. Therefor, you must set the
block parameters to write the data to the loopback before the model attempts
to receive data from the loopback.

16-9

16 Using the Instrument Control Toolbox Block Library

Step 6: Specify the Block Parameter Values
You set parameters for the blocks in your model by double-clicking on the
block.

Double-click the To Instrument block to open its parameters dialog box. Set
the block sample time to 0.8. In the Hardware Configuration tab, specify
new hardware configuration with the values shown in the following figure.

The model uses the default values on the Instrument Initialization and
Send tabs of this block, so you do not need to modify any of their values.

Double-click the Query Instrument block to open its parameters dialog box.
Set the block sample time to 1. Note that this time is slightly longer than the
setting for the To Instrument block. This is to assure that the To Instrument
is complete in writing data to the loopback before the Query Instrument block
reads it.

In the Hardware Configuration tab, specify new hardware configuration
with values to match the settings in the To Instrument block as shown in
the following figure.

16-10

Example: Sending and Receiving Data Through a Serial Port Loopback

The model uses the default values on the Instrument Initialization and
Query tabs of this block, so you do not need to modify any of their values.

Double-click the Constant block to open its parameters dialog box. Change
the Constant value to whatever value you want to send to the instrument.
This example uses 25, as shown. You can leave other setting in this dialog
box at their default values.

For the Display block, you can use its default parameters.

16-11

16 Using the Instrument Control Toolbox Block Library

Step 7: Run the Simulation
To run the simulation, click the Start button on the model window toolbar.
Alternatively, you can use the Simulation menu in the model window and
choose the Start option.

Your specified constant value of 25 is written to the instrument (the serial
loopback), received from the instrument, and shown in the Display block.

While the simulation is running, the status bar at the bottom of the model
window updates the progress of the simulation.

16-12

17

Functions — By Category

Instrument Object Creation (p. 17-2) Create interface objects and device
objects

State Change (p. 17-2) Connect to instruments, disconnect
from instruments, and record
information to disk

Property Display and Configuration
(p. 17-3)

Return properties, configure
properties, and open property
inspector

Reading Data (p. 17-3) Read text, binary, and binblock data
for interface objects

Writing Data (p. 17-4) Write text, binary, and binblock data
for interface objects

Information and Help (p. 17-5) Return function help, property help,
and property characteristics

Graphical Tools (p. 17-5) Tools that facilitate instrument
control in graphical environment

General Purpose (p. 17-6) Delete, clear, find, save, and load
objects, convert objects to M-code

Interface Objects (p. 17-7) Functions listed by interface type
(GPIB, VISA-VXI, and so on)

Device Objects (p. 17-10) Functions used only with device
objects

IVI Configuration Store Objects
(p. 17-10)

Functions used only with IVI
configuration store objects

17 Functions — By Category

Instrument Object Creation

Interface Object (p. 17-2) Create interface object

Device Object (p. 17-2) Create device object

Interface Object

gpib Create GPIB object

serial Create serial port object

tcpip Create TCPIP object

udp Create UDP object

visa Create VISA object

Device Object

icdevice Create device object

State Change

Interface Object (p. 17-3) Control interface object

Device Object (p. 17-3) Control device object

17-2

Property Display and Configuration

Interface Object

fclose Disconnect interface object from
instrument

fopen Connect interface object to
instrument

record Record data and event information
to file

Device Object

connect Connect device object to instrument

disconnect Disconnect device object from
instrument

Property Display and Configuration
get Instrument object properties

inspect Open Property Inspector

set Configure or display instrument
object properties

Reading Data
binblockread Read binblock data from instrument

fgetl Read line of text from instrument
and discard terminator

fgets Read line of text from instrument
and include terminator

17-3

17 Functions — By Category

flushinput Remove data from input buffer

fread Read binary data from instrument

fscanf Read data from instrument, and
format as text

query Write text to instrument, and read
data from instrument

readasync Read data asynchronously from
instrument

scanstr Read data from instrument, format
as text, and parse

stopasync Stop asynchronous read and write
operations

Writing Data
binblockwrite Write binblock data to instrument

flushoutput Remove data from output buffer

fprintf Write text to instrument

fwrite Write binary data to instrument

query Write text to instrument, and read
data from instrument

stopasync Stop asynchronous read and write
operations

17-4

Information and Help

Information and Help
instrhelp Help for instrument object type,

function, or property

instrhwinfo Information about available
hardware

propinfo Instrument object property
information

Graphical Tools

Interface Object (p. 17-5) Graphical tools for interface objects

Device Object (p. 17-5) Graphical tools for device objects

Interface Object

instrcomm Open graphical tool for
communicating with instruments

instrcreate Open graphical tool for creating and
configuring instrument object

tmtool Open Test & Measurement Tool

Device Object

midedit Open graphical tool for creating and
editing MATLAB instrument driver

midtest Open graphical tool for testing
MATLAB instrument driver

tmtool Open Test & Measurement Tool

17-5

17 Functions — By Category

General Purpose
clear Remove instrument objects from

MATLAB workspace

delete Remove instrument objects from
memory

disp Display instrument object summary
information

instrcallback Display event information when
event occurs

instrfind Read instrument objects from
memory to MATLAB workspace

instrfindall Find visible and hidden instrument
objects

instrid Define and retrieve commands that
identify instruments

instrnotify Define notification for instrument
events

instrreset Disconnect and delete all instrument
objects

isvalid Determine whether instrument
objects are valid

length Length of instrument object array

load Load instrument objects and
variables into MATLAB workspace

methods Class method names and
descriptions

obj2mfile Convert instrument object to
MATLAB code

save Save instrument objects and
variables to MAT-file

size Size of instrument object array

17-6

Interface Objects

Interface Objects

GPIB (p. 17-7) Create GPIB object, clear instrument
buffer, send trigger message, perform
serial poll

Serial Port (p. 17-8) Create serial port object, send break
to instrument

TCP/IP (p. 17-8) Create TCP/IP object, return host
information, start or stop echo server

UDP (p. 17-8) Create UDP object, return host
information, start or stop echo server

VISA-GPIB (p. 17-8) Create VISA-GPIB object, clear
instrument buffer, send trigger
message

VISA-GPIB-VXI (p. 17-8) Create VISA-GPIB-VXI object, low
level memory operations, high level
memory operations, send trigger

VISA-Serial (p. 17-9) Create VISA-Serial object

VISA-VXI (p. 17-9) Create VISA-VXI object, low level
memory operations, high level
memory operations, send trigger

GPIB

clrdevice Clear instrument buffer

gpib Create GPIB object

spoll Perform serial poll

trigger Send trigger message to instrument

17-7

17 Functions — By Category

Serial Port

serial Create serial port object

serialbreak Send break to instrument

TCP/IP

echotcpip Start or stop TCP/IP echo server

resolvehost Network name or network address

tcpip Create TCPIP object

UDP

echoudp Start or stop UDP echo server

resolvehost Network name or network address

udp Create UDP object

VISA-GPIB

clrdevice Clear instrument buffer

trigger Send trigger message to instrument

visa Create VISA object

VISA-GPIB-VXI

clrdevice Clear instrument buffer

memmap Map memory for low-level memory
read and write operations

mempeek Low-level memory read from VXI
register

17-8

Interface Objects

mempoke Low-level memory write to VXI
register

memread High-level memory read from VXI
register

memunmap Unmap memory for low-level
memory read and write operations

memwrite High-level memory write to VXI
register

visa Create VISA object

VISA-Serial

visa Create VISA object

VISA-VXI

clrdevice Clear instrument buffer

memmap Map memory for low-level memory
read and write operations

mempeek Low-level memory read from VXI
register

mempoke Low-level memory write to VXI
register

memread High-level memory read from VXI
register

memunmap Unmap memory for low-level
memory read and write operations

memwrite High-level memory write to VXI
register

trigger Send trigger message to instrument

visa Create VISA object

17-9

17 Functions — By Category

Device Objects
devicereset Reset instrument

geterror Check and return error message
from instrument

invoke Execute driver-specific function on
device object

makemid Convert driver to MATLAB
instrument driver format

selftest Run instrument self-test

IVI Configuration Store Objects
add Add entry to IVI configuration store

object

commit Save IVI configuration store object
to data file

iviconfigurationstore Create IVI configuration store object

remove Remove entry from IVI configuration
store object

update Update entry of IVI configuration
store object

17-10

18

Functions — Alphabetical
List

add

Purpose Add entry to IVI configuration store object

Syntax add(obj, 'type', 'name', ...)
add(obj, 'Driversession', 'name', 'ModuleName',

'HardwareAssetName', 'P1', V1)
add(obj, 'HardwareAsset', 'name', 'IOResourceDescriptor',

'P1', V1)
add(obj, 'LogicalName', 'name', 'SessionName', 'P1', V1)
add(obj, struct)

Arguments obj IVI configuration store object

'DriverSession'
'HardwareAsset'
'LogicalName'

Type of entry being added

'name' Name of the DriverSession,
HardwareAsset, or LogicalName
being added

'IOResourceDescriptor' Tells the driver exactly how to locate the
device this asset represents

'ModuleName' IVI instrument driver or software module

'HardwareAssetName' Unique identifier for hardware asset

'SessionName' Unique identifier for asset driver session

'P1' First optional parameter for added entry.
Other parameter-value pairs may follow.

V1 Value for first parameter

struct Structure defining entry to be added; field
names are the entry parameter names

Description add(obj, 'type', 'name', ...) adds a new entry of type to the IVI
configuration store object, obj, with name, name. If an entry of type,
type, with name, name, already exists an error will occur. Based on

18-2

add

type, additional arguments are required. type can be HardwareAsset,
DriverSession, or LogicalName.

add(obj, 'Driversession', 'name', 'ModuleName',
'HardwareAssetName', 'P1', V1) adds a new driver session entry
to the IVI configuration store object, obj, with name, name, using the
specified software module name, ModuleName and hardware asset name,
HardwareAssetName. Optional parameter-value pairs may be included.

Valid parameters for DriverSession are listed below. The default value
for on/off parameters is off.

Parameter Value Description

Description Any string Description of driver session

VirtualNames structure A struct array containing
virtual name mappings

Cache on/off Enable caching if the driver
supports it.

DriverSetup Any string This value is software module
dependent

InterchangeCheck on/off Enable driver
interchangeability checking, if
supported

QueryInstrStatus on/off Enable instrument status
querying by the driver

RangeCheck on/off Enable extended range checking
by the driver, if supported

RecordCoercions on/off Enable recording of coercions by
the driver, if supported

Simulate on/off Enable simulation by the driver

add(obj, 'HardwareAsset', 'name', 'IOResourceDescriptor',
'P1', V1) adds a new hardware asset entry to the IVI configuration
store object, obj, with name, name, and resource descriptor,

18-3

add

IOResourceDescriptor. Optional parameter-value pairs may be
included.

Valid parameters for HardwareAsset are

Parameter Value Description

Description Any string Description of hardware asset

add(obj, 'LogicalName', 'name', 'SessionName', 'P1', V1) adds
a new logical name entry to the IVI configuration store object, obj,
with name, name, and driver session name, SessionName. Optional
parameter-value pairs may be included.

Valid parameters for LogicalName are

Parameter Value Description

Description Any string Description of logical name

add(obj, struct), where struct is a structure whose field names are
the entry parameter names, adds an entry to the IVI configuration
store object, obj, of the specified type with the values contained in the
structure.

Additions made to the configuration store object, obj, can be saved to
the configuration store data file with the commit function.

Examples Construct IVI configuration store object, c.

c = iviconfigurationstore;

Add a hardware asset with name gpib1, and resource description
GPIB0::1::INSTR.

add(c, 'HardwareAsset', 'gpib1', 'GPIB0::1::INSTR');

Add a driver session with name S1, that uses the TekScope software
module and the hardware asset with name gpib1.

18-4

add

add(c, 'DriverSession', 'S1', 'TekScope', 'gpib1');

Add a logical name to configuration store object c, with name MyScope,
driver session name S1, and description A logical name.

add(c, 'LogicalName', 'MyScope', 'S1', ...
'Description', 'A logical name');

Add a hardware asset with the name gpib3, and resource description
GPIB0::3::ISNTR.

s.Type = 'HardwareAsset';
s.Name = 'gpib3';
s.IOResourceDescriptor = 'GPIB0::3::INSTR';
add(c, s);

Save the changes to the IVI configuration store data file.

commit(c);

See Also Functions

iviconfigurationstore, iviconfigurationstore/commit,
iviconfigurationstore/remove, iviconfigurationstore/update

18-5

binblockread

Purpose Read binblock data from instrument

Syntax A = binblockread(obj)
A = binblockread(obj,'precision')
[A,count] = binblockread(...)
[A,count,msg] = binblockread(...)

Arguments obj An interface object.

'precision' The number of bits read for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

A Binblock data returned from the instrument.

count The number of values read.

msg A message indicating if the read operation was
unsuccessful.

Description A = binblockread(obj) reads binary-block (binblock) data from the
instrument connected to obj and returns the values to A. The binblock
format is described in the binblockwrite reference pages.

A = binblockread(obj,'precision') reads binblock data translating
MATLAB values to the precision specified by precision. By default
the uchar precision is used and numeric values are returned in
double-precision arrays. Refer to the fread function for a list of
supported precisions.

[A,count] = binblockread(...) returns the number of values read
to count.

[A,count,msg] = binblockread(...) returns a warning message to
msg if the read operation did not complete successfully.

Remarks Before you can read data from the instrument, it must be connected to
obj with the fopen function. A connected interface object has a Status

18-6

binblockread

property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the instrument.

binblockread blocks the MATLAB command line until one of the
following occurs:

• The data is completely read.

• The time specified by the Timeout property passes.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

Each time binblockread is issued, the ValuesReceived property value
is increased by the number of values read.

Some instruments may send a terminating character after the binblock.
binblockread will not read the terminating character. You can read the
terminating character with the fread function. Additionally, if obj is a
GPIB, VISA-GPIB, VISA-VXI, VISA-USB, or VISA-RSIB object, you can
use the clrdevice function to remove the terminating character.

Examples Create the GPIB object g associated with a National Instruments GPIB
controller with board index 0, and a Tektronix TDS 210 oscilloscope
with primary address 2.

g = gpib('ni',0,2);
g.InputBufferSize = 3000;

Connect g to the instrument, and write string commands that configure
the scope to transfer binary waveform data from memory location A.

fopen(g)
fprintf(g,'DATA:DESTINATION REFA');
fprintf(g,'DATA:ENCDG SRPbinary');
fprintf(g,'DATA:WIDTH 1');
fprintf(g,'DATA:START 1');

Write the CURVE? command, which prepares the scope to transfer data,
and read the data using the binblock format.

18-7

binblockread

fprintf(g,'CURVE?')
data = binblockread(g);

See Also Functions

binblockwrite, fopen, fread, instrhelp

Properties

BytesAvailable, InputBufferSize, Status, ValuesReceived

18-8

binblockwrite

Purpose Write binblock data to instrument

Syntax binblockwrite(obj,A)
binblockwrite(obj,A,'precision')
binblockwrite(obj,A,'header')
binblockwrite(obj,A,'precision','header')
binblockwrite(obj,A,'precision','header','headerformat')

Arguments obj An interface object.

A The data to be written using the binblock format.

'precision' The number of bits written for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

'header' The ASCII header text to be prefixed to the data.

'headerformat' C language conversion specification format for the
header text.

Description binblockwrite(obj,A) writes the data specified by A to the instrument
connected to obj as a binary-block (binblock). The binblock format is
defined as #<N><D><A>, where

• N specifies the number of digits in D that follow.

• D specifies the number of data bytes in A that follow.

• A is the data written to the instrument.

For example, if A is given by [0 5 5 0 5 5 0], the binblock would be
defined as [double('#') 1 7 0 5 5 0 5 5 0].

binblockwrite(obj,A,'precision') writes binblock data translating
MATLAB values to the precision specified by precision. By default
the uchar precision is used. Refer to the fwrite function for a list of
supported precisions.

18-9

binblockwrite

binblockwrite(obj,A,'header') writes a binblock using the data, A,
and the ASCII header, header, to the instrument connected to interface
object, obj. The data written is constructed using the formula

<header>#<N><D><A>

binblockwrite(obj,A,'precision','header') writes binary data, A,
translating MATLAB values to the specified precision, precision. The
ASCII header, header, is prefixed to the binblock.

binblockwrite(obj,A,'precision','header','headerformat')
writes binary data, A, translating MATLAB values to the specified
precision, precision. The ASCII header, header, is prefixed to the
binblock using the format specified by headerformat.

headerformat is a string containing C language conversion
specifications. Conversion specifications are composed of the character
% and the conversion characters d, i, o, u, x, X, f, e, E, g, G, c, and
s. Type instrhelp fprintf for more information on valid values for
headerformat. By default, headerformat is %s.

Remarks Before you can write data to the instrument, it must be connected to
obj with the fopen function. A connected interface object has a Status
property value of open. An error is returned if you attempt to perform a
write operation while obj is not connected to the instrument.

The ValuesSent property value is increased by the number of values
written each time binblockwrite is issued.

An error occurs if the output buffer cannot hold all the data to
be written. You can specify the size of the output buffer with the
OutputBufferSize property.

Examples s = visa('ni', 'ASRL2::INSTR');
fopen(s);

% Write the command: [double('#14') 0 5 0 5] to the instrument.
binblockwrite(s, [0 5 0 5]);

18-10

binblockwrite

% Write the command: [double('Curve #14') 0 5 0 5] to the
% instrument.
binblockwrite(s, [0 5 0 5], 'Curve ')
fclose(s);

See Also Functions

binblockread, fopen, fwrite, instrhelp

Properties

OutputBufferSize, OutputEmptyFcn, Status, Timeout,
TransferStatus, ValuesSent

18-11

clear

Purpose Remove instrument objects from MATLAB workspace

Syntax clear obj

Arguments obj An instrument object or an array of instrument objects.

Description clear obj removes obj from the MATLAB workspace.

Remarks If obj is connected to the instrument and it is cleared from the
workspace, then obj remains connected to the instrument. You can
restore obj to the workspace with the instrfind function. An object
connected to the instrument has a Status property value of open.

To disconnect obj from the instrument, use the fclose function. To
remove obj from memory, use the delete function. You should remove
invalid instrument objects from the workspace with clear.

Examples This example creates the GPIB object g, copies g to a new variable
gcopy, and clears g from the MATLAB workspace. g is then restored to
the workspace with instrfind and is shown to be identical to gcopy.

g = gpib('ni',0,1);
gcopy = g;
clear g
g = instrfind;
isequal(gcopy,g)
ans =

1

See Also Functions

delete, fclose, instrfind, instrhelp, isvalid

Properties

Status

18-12

clrdevice

Purpose Clear instrument buffer

Syntax clrdevice(obj)

Arguments obj A GPIB, VISA-GPIB, VISA-VXI, or VISA-GPIB-VXI object.

Description clrdevice(obj) clears the hardware buffer of the instrument
connected to obj.

Remarks Before you can clear the hardware buffer, the instrument must be
connected to obj with the fopen function. A connected object has a
Status property value of open. If you issue clrdevice when obj is
disconnected from the instrument, then an error is returned.

You can clear the software input buffer using the flushinput function.
You can clear the software output buffer using the flushoutput
function.

See Also Functions

flushinput, flushoutput, fopen

Properties

Status

18-13

commit

Purpose Save IVI configuration store object to data file

Syntax commit(obj)
commit(obj, 'file')

Arguments obj IVI configuration store object

'file' Configuration store data file

Description commit(obj) saves the IVI configuration store object, obj, to the
configuration store data file. The configuration store data file is defined
by obj’s ActualLocation property.

commit(obj, 'file') saves the IVI configuration store object, obj, to
the configuration store data file, file. No changes are saved to the
configuration store data file that is defined by obj’s ActualLocation
property.

The IVI configuration store object can be modified with the add, update,
and remove functions.

See Also Functions

iviconfigurationstore, iviconfigurationstore/add,
iviconfigurationstore/remove, iviconfigurationstore/update

18-14

connect

Purpose Connect device object to instrument

Syntax connect(obj)
connect(obj,'update')

Arguments obj A device object or an array of device objects.

update Update the state of the object or the instrument.

Description connect(obj) connects the device object specified by obj to the
instrument. obj can be an array of device objects.

connect(obj,'update') updates the state of the object or the
instrument. update can be object or instrument. If update is object,
the object is updated to reflect the state of the instrument. If update is
instrument, the instrument is updated to reflect the state of the object.
In this case, all property values defined by the object are sent to the
instrument on open. By default, update is object.

Remarks If obj is successfully connected to the instrument, its Status property
is configured to open. If obj is an array of device objects and one of the
objects cannot be connected to the instrument, the remaining objects in
the array will be connected and a warning is displayed.

Examples Create a device object for a Tektronix TDS 210 oscilloscope that is
connected to a National Instruments GPIB board.

g = gpib('ni',0,2);
d = icdevice('tektronix_tds210',g);

Connect to the instrument.

connect(d)

List the oscilloscope settings that can be configured.

props = set(d);

18-15

connect

Get the current configuration of the oscilloscope.

values = get(d);

Disconnect from the instrument and clean up.

disconnect(d)
delete([d g])

See Also Functions

disconnect, delete, instrhelp

Properties

Status

18-16

delete

Purpose Remove instrument objects from memory

Syntax delete(obj)

Arguments obj An instrument object or an array of instrument objects.

Description delete(obj) removes obj from memory.

Remarks When you delete obj, it becomes an invalid object. Because you cannot
connect an invalid object to the instrument, you should remove it from
the workspace with the clear command. If multiple references to obj
exist in the workspace, then deleting one reference invalidates the
remaining references.

If obj is connected to the instrument, it has a Status property value
of open. If you issue delete while obj is connected, the connection is
automatically broken. You can also disconnect obj from the instrument
with the fclose function.

If obj is an interface object that is associated with a device object, the
device object is automatically deleted when obj is deleted. However, if
obj is a device object, the interface object is not automatically deleted
when obj is deleted.

Examples This example creates the GPIB object g, connects g to the instrument,
writes and reads text data, disconnects g, removes g from memory using
delete, and then removes g from the workspace using clear.

g = gpib('ni',0,1);
fopen(g)
fprintf(g,'*IDN?')
idn = fscanf(g);
fclose(g)
delete(g)
clear g

18-17

delete

See Also Functions

clear, fclose, instrhelp, isvalid, stopasync

Properties

Status

18-18

devicereset

Purpose Reset instrument

Syntax devicereset(obj)

Arguments obj A device object.

Description devicereset(obj) resets the instrument associated with the device
object specified by obj.

18-19

disconnect

Purpose Disconnect device object from instrument

Syntax disconnect(obj)

Arguments obj A device object or an array of device objects.

Description disconnect(obj) disconnects the device object specified by obj from
the instrument.

Remarks If obj is disconnected from the instrument, its Status property is
configured to closed. You can reconnect to the instrument with the
connect function. If obj is an array of device objects and one of the
objects cannot be disconnected from the instrument, the remaining
objects in the array will be disconnected and a warning is displayed.

Examples Create a device object for a Tektronix TDS 210 oscilloscope that is
connected to a National Instruments GPIB board.

g = gpib('ni',0,2);
d = icdevice('tektronix_tds210',g);

Connect to the instrument.

connect(d)

Get the current configuration of the oscilloscope.

values = get(d);

Disconnect from the instrument and clean up.

disconnect(d)
delete([d g])

18-20

disconnect

See Also Functions

connect, delete, instrhelp

Properties

Status

18-21

disp

Purpose Display instrument object summary information

Syntax obj
disp(obj)

Arguments obj An instrument object or an array of instrument objects.

Description obj or disp(obj) displays summary information for obj.

Remarks In addition to the syntax shown above, you can display summary
information for obj by excluding the semicolon when

• Creating an instrument object

• Configuring property values using the dot notation

You can also display summary information via the Workspace
browser by right-clicking an instrument object, and selecting Display
Summary from the context menu.

Examples The following commands display summary information for the GPIB
object g.

g = gpib('ni',0,1)
g.EOSMode = 'read'
g

18-22

echotcpip

Purpose Start or stop TCP/IP echo server

Syntax echotcpip('state',port)
echotcpip('state')

Arguments 'state' Turn the server on or off.

port Port number of the server.

Description echotcpip('state',port) starts a TCP/IP server with port number
specified by port. state can only be on.

echotcpip('state') stops the echo server. state can only be off.

Examples Start the echo server and create a TCPIP object.

echotcpip('on',4000)
t = tcpip('localhost',4000);

Connect the TCPIP object to the host.

fopen(t)

Write to the host and read from the host.

fprintf(t,'echo this string.')
data = fscanf(t);

Stop the echo server and disconnect the TCPIP object from the host.

echotcpip('off')
fclose(t)

See Also Functions

echoudp, tcpip, udp

18-23

echoudp

Purpose Start or stop UDP echo server

Syntax echoudp('state', port)
echoudp('state')

Arguments 'state' Turn the server on or off.

port Port number of the server.

Description echoudp('state', port) starts a UDP server with port number
specified by port. state can only be on.

echoudp('state') stops the echo server. state can only be off.

Examples Start the echo server and create a UDP object.

echoudp('on',4012)
u = udp('127.0.0.1',4012);

Connect the UDP object to the host.

fopen(u)

Write to the host and read from the host.

fwrite(u,65:74)
A = fread(u,10);

Stop the echo server and disconnect the UDP object from the host.

echoudp('off')
fclose(u)

See Also Functions

echotcpip, tcpip, udp

18-24

fclose

Purpose Disconnect interface object from instrument

Syntax fclose(obj)

Arguments obj An interface object or an array of interface objects.

Description fclose(obj) disconnects obj from the instrument.

Remarks If obj was successfully disconnected, then the Status property is
configured to closed and the RecordStatus property is configured to
off. You can reconnect obj to the instrument using the fopen function.

An error is returned if you issue fclose while data is being written
asynchronously. In this case, you should abort the write operation with
the stopasync function, or wait for the write operation to complete.

Examples This example creates the GPIB object g, connects g to the instrument,
writes and reads text data, and then disconnects g from the instrument
using fclose.

g = gpib('ni',0,1);
fopen(g)
fprintf(g,'*IDN?')
idn = fscanf(g);
fclose(g)

At this point, you can once again connect an interface object to the
instrument. If you no longer need g, you should remove it from memory
with the delete function, and remove it from the workspace with the
clear command.

See Also Functions

clear, delete, fopen, instrhelp, record, stopasync

18-25

fclose

Properties

RecordStatus, Status

18-26

fgetl

Purpose Read line of text from instrument and discard terminator

Syntax tline = fgetl(obj)
[tline,count] = fgetl(obj)
[tline,count,msg] = fgetl(obj)
[tline,count,msg,datagramaddress,datagramport] = fgetl(obj)

Arguments obj An interface object.

tline The text read from the instrument, excluding the
terminator.

count The number of values read, including the
terminator.

msg A message indicating if the read operation was
unsuccessful.

datagramaddress The datagram address.

datagramport The datagram port.

Description tline = fgetl(obj) reads one line of text from the instrument
connected to obj, and returns the data to tline. The returned data
does not include the terminator with the text line. To include the
terminator, use fgets.

[tline,count] = fgetl(obj) returns the number of values read to
count.

[tline,count,msg] = fgetl(obj) returns a warning message to msg
if the read operation was unsuccessful.

[tline,count,msg,datagramaddress,datagramport] = fgetl(obj)
returns the remote address and port from which the datagram
originated. These values are returned only if obj is a UDP object.

Remarks Before you can read text from the instrument, it must be connected to
obj with the fopen function. A connected interface object has a Status

18-27

fgetl

property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the instrument.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of
values read — including the terminator — each time fgetl is issued.

Rules for Completing a Read Operation with fgetl

A read operation with fgetl blocks access to the MATLAB command
line until

• The terminator is read. For serial port, TCPIP, UDP, and VISA-serial
objects, the terminator is given by the Terminator property. Note
that for UDP objects, DatagramTerminateMode must be off.

For all other interface objects except VISA-RSIB, the terminator is
given by the EOSCharCode property.

• The EOI line is asserted (GPIB and VXI instruments only).

• A datagram has been received (UDP objects only if
DatagramTerminateMode is on).

• The time specified by the Timeout property passes.

• The input buffer is filled.

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode
property is configured to read or read&write. For example, if EOSMode
is configured to read and EOSCharCode is configured to LF, then one
of the ways that the read operation terminates is when the line feed
character is received.

If EOSMode is none or write, then there is no terminator defined for
read operations. In this case, fgetl will complete execution and return
control to the command line when another criterion, such as a timeout,
is met.

18-28

fgetl

Examples Create the GPIB object g, connect g to a Tektronix TDS 210 oscilloscope,
configure g to complete read operations when the End-Of-String
character is read, and write the *IDN? command with the fprintf
function. *IDN? instructs the scope to return identification information.

g = gpib('ni',0,1);
fopen(g)
g.EOSMode = 'read';
fprintf(g,'*IDN?')

Asynchronously read the identification information from the
instrument.

readasync(g)
g.BytesAvailable
ans =

56

Use fgetl to transfer the data from the input buffer to the MATLAB
workspace, and discard the terminator.

idn = fgetl(g)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04

length(idn)
ans =

55

Disconnect g from the scope, and remove g from memory and the
workspace.

fclose(g)
delete(g)
clear g

See Also Functions

fgets, fopen, instrhelp

18-29

fgetl

Properties

BytesAvailable, EOSCharCode, EOSMode, InputBufferSize, Status,
Terminator, Timeout, ValuesReceived

18-30

fgets

Purpose Read line of text from instrument and include terminator

Syntax tline = fgets(obj)
[tline,count] = fgets(obj)
[tline,count,msg] = fgets(obj)
[tline,count,msg,datagramaddress,datagramport] = fgets(obj)

Arguments obj An interface object.

tline The text read from the instrument, including the
terminator.

count The number of values read.

msg A message indicating that the read operation did
not complete successfully.

datagramaddress The datagram address.

datagramport The datagram port.

Description tline = fgets(obj) reads one line of text from the instrument
connected to obj, and returns the data to tline. The returned data
includes the terminator with the text line. To exclude the terminator,
use fgetl.

[tline,count] = fgets(obj) returns the number of values read to
count.

[tline,count,msg] = fgets(obj) returns a warning message to msg
if the read operation was unsuccessful.

[tline,count,msg,datagramaddress,datagramport] = fgets(obj)
returns the remote address and port from which the datagram
originated. These values are returned only if obj is a UDP object.

Remarks Before you can read text from the instrument, it must be connected to
obj with the fopen function. A connected interface object has a Status

18-31

fgets

property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the instrument.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of
values read — including the terminator — each time fgets is issued.

Rules for Completing a Read Operation with fgets

A read operation with fgets blocks access to the MATLAB command
line until

• The terminator is read. For serial port, TCPIP, UDP, and VISA-serial
objects, the terminator is given by the Terminator property. Note
that for UDP objects, DatagramTerminateMode must be off.

For all other interface objects except VISA-RSIB, the terminator is
given by the EOSCharCode property.

• The EOI line is asserted (GPIB and VXI instruments only).

• A datagram has been received (UDP objects only if
DatagramTerminateMode is on).

• The time specified by the Timeout property passes.

• The input buffer is filled.

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode
property is configured to read or read&write. For example, if EOSMode
is configured to read and EOSCharCode is configured to LF, then one
of the ways that the read operation terminates is when the line feed
character is received.

If EOSMode is none or write, then there is no terminator defined for
read operations. In this case, fgets will complete execution and return
control to the command line when another criterion, such as a timeout,
is met.

18-32

fgets

Examples Create the GPIB object g, connect g to a Tektronix TDS 210 oscilloscope,
configure g to complete read operations when the End-Of-String
character is read, and write the *IDN? command with the fprintf
function. *IDN? instructs the scope to return identification information.

g = gpib('ni',0,1);
fopen(g)
g.EOSMode = 'read';
fprintf(g,'*IDN?')

Asynchronously read the identification information from the
instrument.

readasync(g)
g.BytesAvailable
ans =

56

Use fgets to transfer the data from the input buffer to the MATLAB
workspace, and include the terminator.

idn = fgets(g)
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04
length(idn)
ans =

56

Disconnect g from the scope, and remove g from memory and the
workspace.

fclose(g)
delete(g)
clear g

See Also Functions

fgetl, fopen, instrhelp, query

18-33

fgets

Properties

BytesAvailable, EOSCharCode, EOSMode, InputBufferSize, Status,
Terminator, Timeout, ValuesReceived

18-34

flushinput

Purpose Remove data from input buffer

Syntax flushinput(obj)

Arguments obj An interface object or an array of interface objects.

Description flushinput(obj) removes data from the input buffer associated with
obj.

Remarks After the input buffer is flushed, the BytesAvailable property is
automatically configured to 0.

If flushinput is called during an asynchronous (nonblocking) read
operation, the data currently stored in the input buffer is flushed and
the read operation continues. You can read data asynchronously from
the instrument using the readasync function.

The input buffer is automatically flushed when you connect an object to
the instrument with the fopen function.

You can clear the output buffer with the flushoutput function. You
can clear the hardware buffer for GPIB and VXI instruments with the
clrdevice function.

See Also Functions

clrdevice, flushoutput, fopen, readasync

Properties

BytesAvailable

18-35

flushoutput

Purpose Remove data from output buffer

Syntax flushoutput(obj)

Arguments obj An interface object or an array of interface objects.

Description flushoutput(obj) removes data from the output buffer associated
with obj.

Remarks After the output buffer is flushed, the BytesToOutput property is
automatically configured to 0.

If flushoutput is called during an asynchronous (nonblocking) write
operation, the data currently stored in the output buffer is flushed and
the write operation is aborted. Additionally, the M-file callback function
specified for the OutputEmptyFcn property is executed. You can write
data asynchronously to the instrument using the fprintf or fwrite
functions.

The output buffer is automatically flushed when you connect an object
to the instrument with the fopen function.

You can clear the input buffer with the flushinput function. You can
clear the hardware buffer for GPIB and VXI instruments with the
clrdevice function.

See Also Functions

clrdevice, flushinput, fopen, fprintf, fwrite

Properties

BytesToOutput, OutputEmptyFcn

18-36

fopen

Purpose Connect interface object to instrument

Syntax fopen(obj)

Arguments obj An interface object or an array of interface objects.

Description fopen(obj) connects obj to the instrument.

Remarks Before you can perform a read or write operation, obj must be connected
to the instrument with the fopen function. When obj is connected to
the instrument

• Data remaining in the input buffer or the output buffer is flushed.

• The Status property is set to open.

• The BytesAvailable, ValuesReceived, ValuesSent, and
BytesToOutput properties are set to 0.

An error is returned if you attempt to perform a read or write operation
while obj is not connected to the instrument. You can connect only one
interface object to a given instrument. For example, you can connect
only one serial port object to an instrument associated with the COM1
port. Similarly, you can connect only one GPIB object to an instrument
with a given board index, primary address, and secondary address.

Some properties are read-only while the interface object is connected,
and must be configured before using fopen. Examples include
InputBufferSize and OutputBufferSize. Refer to the property
reference pages or use the propinfo function to determine which
properties have this constraint.

The values for some properties are verified only after obj is connected
to the instrument. If any of these properties are incorrectly configured,
an error is returned when fopen is issued and obj is not connected
to the instrument. Properties of this type include BaudRate and
SecondaryAddress, and are associated with instrument settings.

18-37

fopen

Examples This example creates the GPIB object g, connects g to the instrument
using fopen, writes and reads text data, and then disconnects g from
the instrument.

g = gpib('ni',0,1);
fopen(g)
fprintf(g,'*IDN?')
idn = fscanf(g);
fclose(g)

See Also Functions

fclose, instrhelp, propinfo

Properties

BytesAvailable, BytesToOutput, Status, ValuesReceived,
ValuesSent

18-38

fprintf

Purpose Write text to instrument

Syntax fprintf(obj,'cmd')
fprintf(obj,'format','cmd')
fprintf(obj,'cmd','mode')
fprintf(obj,'format','cmd','mode')

Arguments obj An interface object.

'cmd' The string written to the instrument.

'format' C language conversion specification.

'mode' Specifies whether data is written synchronously or
asynchronously.

Description fprintf(obj,'cmd') writes the string cmd to the instrument connected
to obj. The default format is %s\n. The write operation is synchronous
and blocks the command line until execution is complete.

fprintf(obj,'format','cmd') writes the string using the format
specified by format.

format is a C language conversion specification. Conversion
specifications involve the % character and the conversion characters d,
i, o, u, x, X, f, e, E, g, G, c, and s. Refer to the sprintf file I/O format
specifications or a C manual for more information.

fprintf(obj,'cmd','mode') writes the string with command-line
access specified by mode. If mode is sync, cmd is written synchronously
and the command line is blocked. If mode is async, cmd is written
asynchronously and the command line is not blocked. If mode is not
specified, the write operation is synchronous.

fprintf(obj,'format','cmd','mode') writes the string using the
specified format. If mode is sync, cmd is written synchronously. If mode
is async, cmd is written asynchronously.

18-39

fprintf

Remarks Before you can write text to the instrument, it must be connected to obj
with the fopen function. A connected interface object has a Status
property value of open. An error is returned if you attempt to perform a
write operation while obj is not connected to the instrument.

The ValuesSent property value is increased by the number of values
written each time fprintf is issued.

An error occurs if the output buffer cannot hold all the data to
be written. You can specify the size of the output buffer with the
OutputBufferSize property.

Synchronous Versus Asynchronous Write Operations

By default, text is written to the instrument synchronously and the
command line is blocked until the operation completes. You can perform
an asynchronous write by configuring the mode input argument to be
async. For asynchronous writes,

• The BytesToOutput property value is continuously updated to reflect
the number of bytes in the output buffer.

• The M-file callback function specified for the OutputEmptyFcn
property is executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in
progress with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more
detail in “Synchronous Versus Asynchronous Write Operations” on page
3-17.

Rules for Completing a Write Operation with fprintf

A write operation using fprintf completes when

• The specified data is written.

• The time specified by the Timeout property passes.

18-40

fprintf

Rules for Writing the Terminator

For serial port, TCPIP, UDP, and VISA-serial objects, all occurrences of
\n in cmd are replaced with the Terminator property value. Therefore,
when using the default format %s\n, all commands written to the
instrument will end with this property value.

For GPIB, VISA-GPIB, VISA-VXI, and VISA-GPIB-VXI objects, all
occurrences of \n in cmd are replaced with the EOSCharCode property
value if the EOSMode property is set to write or read&write. For
example, if EOSMode is set to write and EOSCharCode is set to LF,
then all occurrences of \n are replaced with a line feed character.
Additionally, for GPIB objects, the End Or Identify (EOI) line is asserted
when the terminator is written out.

Note The terminator required by your instrument will be described in
its documentation.

Examples Create the serial port object s, connect s to a Tektronix TDS 210
oscilloscope, and write the RS232? command with the fprintf function.
RS232? instructs the scope to return serial port communications
settings.

s = serial('COM1');
fopen(s)
fprintf(s,'RS232?')
settings = fscanf(s)
settings =
9600;1;0;NONE;LF

Because the default format for fprintf is %s\n, the terminator specified
by the Terminator property was automatically written. However, in
some cases you might want to suppress writing the terminator. To do so,
you must explicitly specify a format for the data that does not include
the terminator, or configure the terminator to empty.

18-41

fprintf

fprintf(s,'%s','RS232?')

See Also Functions

fopen, fwrite, instrhelp, query, sprintf

Properties

BytesToOutput, EOSCharCode, EOSMode, OutputBufferSize,
OutputEmptyFcn, Status, TransferStatus, ValuesSent

18-42

fread

Purpose Read binary data from instrument

Syntax A = fread(obj)
A = fread(obj,size)
A = fread(obj,size,'precision')
[A,count] = fread(...)
[A,count,msg] = fread(...)
[A,count,msg,datagramaddress] = fread(obj,...)
[A,count,msg,datagramaddress,datagramport] = fread(obj,...)

Arguments obj An interface object.

size The number of values to read.

'precision' The number of bits read for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

A Binary data returned from the instrument.

count The number of values read.

msg A message indicating if the read operation was
unsuccessful.

datagramaddressThe address of the datagram sender.

datagramport The port of the datagram sender.

Description A = fread(obj) and A = fread(obj,size) read binary data from the
instrument connected to obj, and returns the data to A. The maximum
number of values to read is specified by size. If size is not specified,
the maximum number of values to read is determined by the object’s
InputBufferSize property. Valid options for size are

n Read at most n values into a column vector.

[m,n] Read at most m–by–n values filling an m–by–n
matrix in column order.

18-43

fread

size cannot be inf, and an error is returned if the specified number
of values cannot be stored in the input buffer. You specify the size, in
bytes, of the input buffer with the InputBufferSize property. A value
is defined as a byte multiplied by the precision (see below).

If obj is a UDP object and DatagramTerminateMode is off, the size
value is honored. If size is less than the length of the datagram,
only size values are read. If size is greater than the length of the
datagram, a warning is issued stating that a complete datagram was
read before size values was reached.

A = fread(obj,size,'precision') reads binary data with precision
specified by precision.

precision controls the number of bits read for each value and the
interpretation of those bits as integer, floating-point, or character
values. If precision is not specified, uchar (an 8-bit unsigned
character) is used. By default, numeric values are returned in
double-precision arrays. The supported values for precision are listed
below in Remarks.

[A,count] = fread(...) returns the number of values read to count.

[A,count,msg] = fread(...) returns a warning message to msg if the
read operation was unsuccessful.

[A,count,msg,datagramaddress] = fread(obj,...) returns the
datagram address to datagramaddress if obj is a UDP object. If more
than one datagram is read, datagramaddress is ’ ’.

[A,count,msg,datagramaddress,datagramport] = fread(obj,...)
returns the datagram port to datagramport if obj is a UDP object. If
more than one datagram is read, datagramport is [].

Remarks Before you can read data from the instrument, it must be connected to
obj with the fopen function. A connected interface object has a Status
property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the instrument.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

18-44

fread

The ValuesReceived property value is increased by the number of
values read, each time fread is issued.

Rules for Completing a Binary Read Operation

A read operation with fread blocks access to the MATLAB command
line until

• The specified number of values is read. For UDP objects,
DatagramTerminateMode must be off.

• The time specified by the Timeout property passes.

• A datagram is received (for UDP objects only when
DatagramTerminateMode is on).

• The input buffer is filled.

• The EOI line is asserted (GPIB and VXI instruments only).

• The EOSCharCode is received (GPIB and VXI instruments only).

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode
property is configured to read or read&write. For example, if EOSMode
is configured to read and EOSCharCode is configured to LF, then one
of the ways that the read operation terminates is when the line feed
character is received.

If EOSMode is none or write, then there is no terminator defined for
read operations. In this case, fread will complete execution and return
control to the command when another criterion, such as a timeout, is
met.

Supported Precisions

The supported values for precision are listed below.

18-45

fread

Data Type Precision Interpretation

uchar 8-bit unsigned character

schar 8-bit signed character

Character

char 8-bit signed or unsigned character

int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

Integer

ulong 32- or 64-bit unsigned integer

single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

Floating-point

float64 64-bit floating point

See Also Functions

fgetl, fgets, fopen, fscanf, instrhelp

18-46

fread

Properties

BytesAvailable, InputBufferSize, Status, ValuesReceived

18-47

fscanf

Purpose Read data from instrument, and format as text

Syntax A = fscanf(obj)
A = fscanf(obj,'format')
A = fscanf(obj,'format',size)
[A,count] = fscanf(...)
[A,count,msg] = fscanf(...)
[A,count,msg,datagramaddress] = fscanf(obj,...)
[A,count,msg,datagramaddress,datagramport] = fscanf(obj,...)

Arguments obj An interface object.

'format' C language conversion specification.

size The number of values to read.

A Data read from the instrument and formatted
as text.

count The number of values read.

msg A message indicating if the read operation was
unsuccessful.

datagramaddress The address of the datagram sender.

datagramport The port of the datagram sender.

Description A = fscanf(obj) reads data from the instrument connected to obj,
and returns it to A. The data is converted to text using the %c format.

A = fscanf(obj,'format') reads data and converts it according to
format.

format is a C language conversion specification. Conversion
specifications involve the % character and the conversion characters d,
i, o, u, x, X, f, e, E, g, G, c, and s. Refer to the sscanf file I/O format
specifications or a C manual for more information.

18-48

fscanf

A = fscanf(obj,'format',size) reads the number of values specified
by size. Valid options for size are

n Read at most n values into a column vector.

[m,n] Read at most m–by–n values filling an m–by–n matrix
in column order.

size cannot be inf, and an error is returned if the specified number of
values cannot be stored in the input buffer. If size is not of the form
[m,n], and a character conversion is specified, then A is returned as a
row vector. You specify the size, in bytes, of the input buffer with the
InputBufferSize property. An ASCII value is one byte.

If obj is a UDP object and DatagramTerminateMode is off, the size
value is honored. If size is less than the length of the datagram,
only size values are read. If size is greater than the length of the
datagram, a warning is issued stating that a complete datagram was
read before size values was reached.

[A,count] = fscanf(...) returns the number of values read to count.

[A,count,msg] = fscanf(...) returns a warning message to msg if
the read operation did not complete successfully.

[A,count,msg,datagramaddress] = fscanf(obj,...) returns the
datagram address to datagramaddress if obj is a UDP object. If more
than one datagram is read, datagramaddress is ’ ’.

[A,count,msg,datagramaddress,datagramport] =
fscanf(obj,...) returns the datagram port to datagramport if obj is
a UDP object. If more than one datagram is read, datagramport is [].

Remarks Before you can read data from the instrument, it must be connected to
obj with the fopen function. A connected interface object has a Status
property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the instrument.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

18-49

fscanf

The ValuesReceived property value is increased by the number of
values read — including the terminator — each time fscanf is issued.

Rules for Completing a Read Operation with fscanf

A read operation with fscanf blocks access to the MATLAB command
line until

• The terminator is read. For serial port, TCPIP, UDP, and VISA-serial
objects, the terminator is given by the Terminator property.
If Terminator is empty, fscanf will complete execution and
return control when another criterion is met. For UDP objects,
DatagramTerminateMode must be off.

For all other interface objects, the terminator is given by the
EOSCharCode property.

• The time specified by the Timeout property passes.

• The number of values specified by size is read. For UDP objects,
DatagramTerminateMode must be off.

• A datagram is received (for UDP objects only when
DatagramTerminateMode is on).

• The input buffer is filled.

• The EOI line is asserted (GPIB and VXI instruments only).

More About the GPIB and VXI Terminator

The EOSCharCode property value is recognized only when the EOSMode
property is configured to read or read&write. For example, if EOSMode
is configured to read and EOSCharCode is configured to LF, then one
of the ways that the read operation terminates is when the line feed
character is received.

If EOSMode is none or write, then there is no terminator defined for read
operations. In this case, fscanf will complete execution and return
control to the command when another criterion, such as a timeout, is
met.

18-50

fscanf

Examples Create the serial port object s and connect s to a Tektronix TDS 210
oscilloscope, which is displaying a sine wave.

s = serial('COM1');
fopen(s)

Use the fprintf function to configure the scope to measure the
peak-to-peak voltage of the sine wave, return the measurement type,
and return the peak-to-peak voltage.

fprintf(s,'MEASUREMENT:IMMED:TYPE PK2PK')
fprintf(s,'MEASUREMENT:IMMED:TYPE?')
fprintf(s,'MEASUREMENT:IMMED:VAL?')

Because the default value for the ReadAsyncMode property is
continuous, data associated with the two query commands is
automatically returned to the input buffer.

s.BytesAvailable
ans =

13

Use fscanf to read the measurement type. The operation will complete
when the first terminator is read.

meas = fscanf(s)
meas =
PK2PK

Use fscanf to read the peak-to-peak voltage as a floating-point number,
and exclude the terminator.

pk2pk = fscanf(s,'%e',6)
pk2pk =

2.0200

18-51

fscanf

Disconnect s from the scope, and remove s from memory and the
workspace.

fclose(s)
delete(s)
clear s

See Also Functions

fgetl, fgets, fopen, fread, instrhelp, scanstr, sscanf

Properties

BytesAvailable, BytesAvailableFcn, EOSCharCode, EOSMode,
InputBufferSize, Status, Terminator, Timeout, TransferStatus

18-52

fwrite

Purpose Write binary data to instrument

Syntax fwrite(obj,A)
fwrite(obj,A,'precision')
fwrite(obj,A,'mode')
fwrite(obj,A,'precision','mode')

Arguments obj An interface object.

A The binary data written to the instrument.

'precision' The number of bits written for each value, and the
interpretation of the bits as character, integer, or
floating-point values.

'mode' Specifies whether data is written synchronously or
asynchronously.

Description fwrite(obj,A) writes the binary data A to the instrument connected
to obj.

fwrite(obj,A,'precision') writes binary data with precision specified
by precision.

precision controls the number of bits written for each value and the
interpretation of those bits as integer, floating-point, or character
values. If precision is not specified, uchar (an 8-bit unsigned character)
is used. The support values for precision are listed in “Supported
Precisions” on page 18-45.

fwrite(obj,A,'mode') writes binary data with command line access
specified by mode. If mode is sync, A is written synchronously and the
command line is blocked. If mode is async, A is written asynchronously
and the command line is not blocked. If mode is not specified, the write
operation is synchronous.

fwrite(obj,A,'precision','mode') writes binary data with precision
specified by precision and command-line access specified by mode.

18-53

fwrite

Remarks Before you can write data to the instrument, it must be connected to
obj with the fopen function. A connected interface object has a Status
property value of open. An error is returned if you attempt to perform a
write operation while obj is not connected to the instrument.

The ValuesSent property value is increased by the number of values
written each time fwrite is issued.

An error occurs if the output buffer cannot hold all the data to
be written. You can specify the size of the output buffer with the
OutputBufferSize property.

Synchronous Versus Asynchronous Write Operations

By default, data is written to the instrument synchronously and the
command line is blocked until the operation completes. You can perform
an asynchronous write by configuring the mode input argument to be
async. For asynchronous writes,

• The BytesToOutput property value is continuously updated to reflect
the number of bytes in the output buffer.

• The M-file callback function specified for the OutputEmptyFcn
property is executed when the output buffer is empty.

You can determine whether an asynchronous write operation is in
progress with the TransferStatus property.

Synchronous and asynchronous write operations are discussed in more
detail in “Synchronous Versus Asynchronous Write Operations” on page
3-17.

Rules for Completing a Write Operation with fwrite

A binary write operation using fwrite completes when

• The specified data is written.

• The time specified by the Timeout property passes.

18-54

fwrite

Note The Terminator and EOSCharCode properties are not used with
binary write operations.

Supported Precisions

The supported values for precision are listed below.

Data Type Precision Interpretation

uchar 8-bit unsigned character

schar 8-bit signed character

Character

char 8-bit signed or unsigned
character

int8 8-bit integer

int16 16-bit integer

int32 32-bit integer

uint8 8-bit unsigned integer

uint16 16-bit unsigned integer

uint32 32-bit unsigned integer

short 16-bit integer

int 32-bit integer

long 32- or 64-bit integer

ushort 16-bit unsigned integer

uint 32-bit unsigned integer

Integer

ulong 32- or 64-bit unsigned
integer

18-55

fwrite

Data Type Precision Interpretation

single 32-bit floating point

float32 32-bit floating point

float 32-bit floating point

double 64-bit floating point

Floating-point

float64 64-bit floating point

See Also Functions

fopen, fprintf, instrhelp

Properties

OutputBufferSize, OutputEmptyFcn, Status, Timeout,
TransferStatus, ValuesSent

18-56

get

Purpose Instrument object properties

Syntax get(obj)
out = get(obj)
out = get(obj,'PropertyName')

Arguments obj An instrument object or an array of instrument
objects.

'PropertyName' A property name or a cell array of property
names.

out A single property value, a structure of property
values, or a cell array of property values.

Description get(obj) returns all property names and their current values to the
command line for obj. The properties are divided into two sections.
The base properties are listed first and the object-specific properties
are listed second.

out = get(obj) returns the structure out where each field name is the
name of a property of obj, and each field contains the value of that
property.

out = get(obj,'PropertyName') returns the value out of the property
specified by PropertyName for obj. If PropertyName is replaced by a
1-by-n or n-by-1 cell array of strings containing property names, then
get returns a 1-by-n cell array of values to out. If obj is an array of
instrument objects, then out will be an m-by-n cell array of property
values where m is equal to the length of obj and n is equal to the
number of properties specified.

Remarks When specifying a property name, you can do so without regard to case,
and you can make use of property name completion. For example, if g is
a GPIB object, then these commands are all valid.

out = get(g,'EOSMode');

18-57

get

out = get(g,'eosmode');
out = get(g,'EOSM');

Examples This example illustrates some of the ways you can use get to return
property values for the GPIB object g.

g = gpib('ni',0,1);
out1 = get(g);
out2 = get(g,{'PrimaryAddress','EOSCharCode'});
get(g,'EOIMode')
ans =
on

See Also Functions

instrhelp, propinfo, set

18-58

geterror

Purpose Check and return error message from instrument

Syntax msg = geterror(obj)

Arguments obj A device object.

msg The error message returned from the instrument.

Description msg = geterror(obj) checks the instrument associated with the
device object specified by obj for an error message. If an error message
exists, it is returned to msg. The interpretation of msg will vary based
on the instrument.

18-59

gpib

Purpose Create GPIB object

Syntax obj = gpib('vendor, boardindex, primaryaddress)
obj = gpib('vendor',boardindex,primaryaddress,'PropertyName',

PropertyValue,...)

Arguments 'vendor' The vendor name.

boardindex The GPIB board index.

primaryaddress The instrument primary address.

'PropertyName' A GPIB property name.

'PropertyValue' A property value supported by PropertyName.

obj The GPIB object.

Description obj = gpib('vendor, boardindex, primaryaddress) creates the
GPIB object obj associated with the board specified by boardindex, and
the instrument specified by primaryaddress. The GPIB hardware is
supplied by vendor. Supported vendors are given below.

Vendor Description

advantech Advantech Company hardware

agilent Agilent Technologies hardware

cec Capital Equipment Corporation hardware

contec CONTEC hardware

ics ICS Electronics hardware

iotech IOTech hardware

keithley Keithley Instruments hardware

18-60

gpib

Vendor Description

mcc Measurement Computing Corporation
hardware

ni National Instruments hardware

obj = gpib('vendor',boardindex,primaryaddress,'PropertyName',
PropertyValue,...) creates the GPIB object with the specified
property names and property values. If an invalid property name or
property value is specified, an error is returned and obj is not created.

Remarks At any time, you can use the instrhelp function to view a complete
listing of properties and functions associated with GPIB objects.

instrhelp gpib

When you create a GPIB object, these property value are automatically
configured:

• Type is given by gpib.

• Name is given by concatenating GPIB with the board index and the
primary address specified in the gpib function. If the secondary
address is specified, then this value is also used in Name.

• BoardIndex and PrimaryAddress are given by the values supplied to
the gpib function.

Note You do not use the GPIB board primary address in the GPIB
object constructor syntax. You use the board index, and the instrument
address.

You can specify the property names and property values using any
format supported by the set function. For example, you can use
property name/property value cell array pairs. Additionally, you can

18-61

gpib

specify property names without regard to case, and you can make use of
property name completion. For example, these commands are all valid:

g = gpib('ni',0,1,'SecondaryAddress',96);
g = gpib('ni',0,1,'secondaryaddress',96);
g = gpib('ni',0,1,'SECOND',96);

Before you can communicate with the instrument, it must be connected
to obj with the fopen function. A connected GPIB object has a Status
property value of open. An error is returned if you attempt to perform a
read or write operation while obj is not connected to the instrument.

You cannot connect multiple GPIB objects to the same instrument. A
GPIB instrument is uniquely identified by its board index, primary
address, and secondary address.

Examples This example creates the GPIB object g1 associated with a National
Instruments board at index 0 with primary address 1, and then connects
g1 to the instrument.

g1 = gpib('ni',0,1);
fopen(g1)

The Type, Name, BoardIndex, and PrimaryAddress properties are
automatically configured.

get(g1, {'Type','Name','BoardIndex','PrimaryAddress'})
ans =

'gpib' 'GPIB0-1' [0] [1]

To specify the secondary address during object creation,

g2 = gpib('ni',0,1,'SecondaryAddress',96);

See Also Functions

fopen, instrhelp, instrhwinfo

18-62

gpib

Properties

BoardIndex, Name, PrimaryAddress, SecondaryAddress, Status, Type

18-63

icdevice

Purpose Create device object

Syntax obj = icdevice('driver', hwobj)
obj = icdevice('driver', 'RsrcName')
obj = icdevice('driver')
obj = icdevice('driver', hwobj, 'P1', V1, 'P2', V2,...)
obj = icdevice('driver', 'RsrcName','P1', V1, 'P2', V2,...)
obj = icdevice('driver','P1', V1, 'P2', V2,...)

Arguments driver A MATLAB instrument driver.

hwobj An interface object.

RsrcName VISA resource name.

'P1', 'P2',... Device-specific property names.

V1, V2,... Property values supported by corresponding P1,
P2,...

obj A device object.

Description obj = icdevice('driver', hwobj) creates the device object obj. The
instrument-specific information is defined in the MATLAB interface
instrument driver, driver. Communication to the instrument is done
through the interface object, hwobj. The interface object can be a serial
port, GPIB, VISA, TCPIP, or UDP object. If driver does not exist or if
hwobj is invalid, the device object is not created.

Device objects may also be used with VXIplug&play and Interchangeable
Virtual Instrument (IVI) drivers. To use these drivers, you must
first have a MATLAB instrument driver wrapper for the underlying
VXIplug&play or IVI driver. If the MATLAB instrument driver wrapper
does not already exist, it may be created using makemid or midedit.
Note that makemid or midedit only needs to be used once to create the
MATLAB instrument driver wrapper.

obj = icdevice('driver', 'RsrcName') creates a device object obj,
using the MATLAB instrument driver, driver. The specified driver

18-64

icdevice

must be a MATLAB VXIplug&play instrument driver or MATLAB IVI
instrument driver. Communication to the instrument is done through
the resource specified by rsrcname. For example, all VXIplug&play,
and many IVI drivers require VISA resource names for rsrcname.

obj = icdevice('driver') constructs a device object obj, using the
MATLAB instrument driver, driver. The specified driver must be a
MATLAB IVI instrument driver, and the underlying IVI driver must be
referenced using a logical name.

obj = icdevice('driver', hwobj, 'P1', V1, 'P2', V2,...), obj
= icdevice('driver', 'RsrcName','P1', V1, 'P2', V2,...), and
obj = icdevice('driver','P1', V1, 'P2', V2,...), construct a
device object, obj, with the specified property values. If an invalid
property name or property value is specified, the object will not be
created.

Note that the parameter-value pairs can be in any format supported
by the set function: parameter-value string pairs, structures, and
parameter-value cell array pairs.

Additionally, you can specify property names without regard to case,
and you can make use of property name completion. For example, these
commands are all valid and equivalent:

d = icdevice('tektronix_tds210',g,'ObjectVisibility','on');
d = icdevice('tektronix_tds210',g,'objectvisibility','on');
d = icdevice('tektronix_tds210',g,'ObjectVis','on');

Remarks At any time, you can use the instrhelp function to view a complete
listing of properties and functions associated with device objects.

instrhelp icdevice

When you create a device object, these property values are automatically
configured:

• Interface specifies the interface used to communicate with the
instrument. For device objects created using interface objects, it is
that interface object. For VXIplug&play and IVI-C, this is the session

18-65

icdevice

handle to the driver session. For IVI-COM and MATLAB instrument
drivers, this is the handle to the driver’s default COM interface.

• LogicalName is an IVI logical name. For non-IVI drivers, it is empty.

• Name is given by concatenating the instrument type with the name
of the instrument driver.

• RsrcName is the full VISA resource name for VXIplug&play and IVI
drivers. For MATLAB interface drivers, RsrcName is an empty string.

• Type is the instrument type, if known (for example, scope or
multimeter).

To communicate with the instrument, the device object must be
connected to the instrument with the connect function. When the
device object is constructed, the object’s Status property is closed.
Once the device object is connected to the instrument with the connect
function, the Status property is configured to open.

Examples The first example creates a device object for a Tektronix TDS 210
oscilloscope that is connected to a Keithley GPIB board, using a
MATLAB interface object and MATLAB interface instrument driver.

g = gpib('keithley',0,2);
d = icdevice('tektronix_tds210',g);

Connect to the instrument.

connect(d);

List the oscilloscope settings that can be configured.

props = set(d);

Get the current configuration of the oscilloscope.

values = get(d);

18-66

icdevice

Disconnect from the instrument and clean up.

disconnect(d);
delete([d g]);

The second example creates a device object for a Tektronix TDS 210
oscilloscope using a MATLAB VXIplug&play instrument driver.

This example assumes that the 'tktds5k' VXIplug&play driver is
installed on your system.

This first step is necessary only if a MATLAB VXIplug&play instrument
driver for the tktds5k does not exist on your system.

makemid('tktds5k', 'Tktds5kMATLABDriver');

Construct a device object that uses the VXIplug&play driver. The
instrument is assumed to be located at GPIB primary address 2.

d = icdevice('Tktds5kMATLABDriver', 'GPIB0::2::INSTR');

Connect to the instrument.

connect(d);

List the oscilloscope settings that can be configured.

props = set(d);

Get the current configuration of the oscilloscope.

values = get(d);

Disconnect from the instrument and clean up.

disconnect(d);
delete(d);

See Also Functions

icdevice/connect, icdevice/disconnect, instrhelp

18-67

icdevice

Properties

Status

18-68

inspect

Purpose Open Property Inspector

Syntax inspect(obj)

Arguments obj An instrument object or an array of instrument objects.

Description inspect(obj) opens the Property Inspector and allows you to inspect
and set properties for instrument object obj.

Remarks You can also open the Property Inspector via the Workspace browser
by right-clicking an instrument object and selecting Call Property
Inspector from the context menu, or by double-clicking the object.

Below is a Property Inspector for a device object that communicates
with a Tektronix TDS 210 oscilloscope.

18-69

inspect

18-70

instrcallback

Purpose Display event information when event occurs

Syntax instrcallback(obj, event)

Arguments obj An instrument object.

event The event that caused the callback to execute.

Description instrcallback(obj, event) displays a message that contains the
event type, the time the event occurred, and the name of the instrument
object that caused the event to occur.

For error events, the error message is also displayed. For pin status
events, the pin that changed value and its value are also displayed. For
trigger events, the trigger line is also displayed. For datagram received
events, the number of bytes received and the datagram address and
port are also displayed.

Remarks You should use instrcallback as a template from which you create
callback functions that suit your specific application needs.

Examples The following example creates the serial port objects s, and configures
s to execute instrcallback when an output-empty event occurs. The
event occurs after the *IDN? command is written to the instrument.

s = serial('COM1');
set(s,'OutputEmptyFcn',@instrcallback)
fopen(s)
fprintf(s,'*IDN?','async')

The resulting display from instrcallback is shown below.

OutputEmpty event occurred at 08:37:49 for the object: Serial-COM1

18-71

instrcallback

Read the identification information from the input buffer and end the
serial port session.

idn = fscanf(s);
fclose(s)
delete(s)
clear s

18-72

instrcomm

Purpose Open graphical tool for communicating with instruments

Syntax instrcomm
instrcomm(obj)

Arguments obj An instrument object.

Description instrcomm opens the Instrument Control Communication Tool, which
is an interactive tool for communicating with instruments. With this
tool you can

• Display all existing instrument objects

• Create new instrument objects

• Configure instrument object properties

• Connect or disconnect instrument objects from the instrument

• Read or write binary or ASCII data to and from the instrument

• Export instrument data to the MATLAB workspace, a MAT-file,
MATLAB array editor, or directly to a plot

• Convert the communication session to an equivalent M-file

• Flush the input buffer

instrcomm(obj) opens the Instrument Control Communication Tool
targeting the instrument object, obj.

Creating Instrument Interface Objects

You must create an instrument interface object (GPIB, VISA, TCPIP,
UDP, or serial port) to communicate with instruments using the
Instrument Control Communication Tool. There are three ways to
create a new object:

18-73

instrcomm

• Select Create New Object from the File menu. This displays the
New Object Creation dialog box, which enables you to define the
interface object you want to use.

• Use the Instrument Control Creation Tool (instrcreate) to create
and configure the interface object.

• Call the object constructor on the command line. See “Creating
Instrument Objects” on page 2-3 for more information.

Configuring Instrument Interface Objects

You can use the Property Inspector to access all interface object
properties. To display the Property Inspector, right-click on any
interface object in the Instrument Object Browser and select Edit
Properties.

Generating Session M-Code

You can record (and later recreate) your communication session by
generating M-Code from your current session. Select the File > Save
Session Log menu item and provide a name for the M-file in the dialog
box displayed. See “Recording the Session in M-Code” on page 18-77 for
a sample of the code generated.

Exporting Data

The Instrument Control Communication Tool provides options for
exporting data as well as instrument objects. The File > Export menu
item provides two choices:

18-74

instrcomm

• Instrument Response(s) – export the data read from the
instrument as variables in the MATLAB workspace, as a plot in a
figure window, as variables in an MAT-File, or to the MATLAB Array
Editor.

• Instrument Object – export the instrument object to the MATLAB
workspace, as the equivalent M-File, or in a MAT-File.

Examples This example uses the Instrument Control Communication Tool to
communicate with a Tektronix TDS 210 oscilloscope. The read and
write operations are based on “Example: Writing and Reading Text
Data” on page 4-20.

The first step is to create the GPIB interface object. This example
creates the object by calling the gpib constructor on the command line.

g = gpib('keithley',0,2);

Now open the Instrument Control Communication Tool using the GPIB
object g.

instrcomm(g)

The instrcomm window is shown below. Note that the newly create
GPIB object is displayed in the Instrument Object Browser.

18-75

instrcomm

The communication session follows these steps:

1 At the top of the pane, a button label indicates that the connection to
object GPIB0-2 is Closed. Clicking this button connects the object to
the instrument and changes the button label to Open.

2 In the Command pane, enter the instrument commands one at a
time, and click the Write, Read, or Query button as needed for
each command.

You can specify the command and data format using the Command
Type and Format options, respectively.

The complete communication session is shown below.

18-76

instrcomm

Recording the Session in M-Code

Create a record of this example by generating M-code. To do this, select
the File > Save Session Log menu item using the name session1.m
for the generated M-file. The M-file contains the following code.

%SESSION1 M-Code for communicating with an instrument.

%

% This is the machine generated represenation of an instrument

% control session. The instrument control session comprises all

% the steps you are likely to take when communicating with your

% instrument. These steps are:

%

% 1. Create an instrument object

% 2. Connect to the instrument

% 3. Configure properties

% 4. Write and read data

% 5. Disconnect from the instrument

18-77

instrcomm

%

% To run the instrument control session, type the name of the

% M-file, session1, at the MATLAB command prompt.

%

% The M-file, SESSION1.M must be on your MATLAB PATH. For

% additional information on setting your MATLAB PATH, type

% 'help addpath' at the MATLAB command prompt.

%

% Example:

% session1;

%

% See also SERIAL, GPIB, TCPIP, UDP, VISA.

%

% Creation time: 12-Jan-2004 15:52:29

% Create a GPIB object.

obj1 = instrfind('Type', 'gpib', 'BoardIndex', 0,

'PrimaryAddress', 2, 'Tag', '');

% Create the GPIB object if it does not exist

% otherwise use the object that was found.

if isempty(obj1)

obj1 = gpib('Keithley', 0, 2);

else

fclose(obj1);

obj1 = obj1(1)

end

% Connect to instrument object, obj1.

fopen(obj1);

% Communicating with instrument object, obj1.

data1 = query(obj1, '*IDN?');

data2 = query(obj1, 'MEASUREMENT:IMMED:SOURCE?');

fprintf(obj1, 'MEASUREMENT:MEAS1:TYPE PK2PK');

data3 = query(obj1, 'MEASUREMENT:MEAS1:VALUE?');

18-78

instrcomm

% Disconnect all objects.

fclose(obj1);

% Clean up all objects.

delete(obj1);

See Also Functions

instrcreate

18-79

instrcreate

Purpose Open graphical tool for creating and configuring instrument object

Syntax instrcreate

Description instrcreate open the Instrument Control Creation Tool. Using this
tool, you can

• Create instrument objects.

• Configure new and existing instrument objects, regardless of how
the objects were created.

• Identify the instrument connected to the object.

• See a list of all existing instrument objects.

You can use the instrument object in conjunction with the Instrument
Control Communication Tool, instrcomm, to communicate with
instruments.

If you want to access the object from the command line, click the
Export button and save the instrument object as a workspace variable,
a MAT-file, or convert it to the equivalent M-code.

Examples This example uses instrcreate to create a GPIB object that
communicates with a Tektronix TDS 210 oscilloscope. The configuration
steps are taken from “Example: Reading Binary Data” on page 4-22.

The first step is to open the Instrument Control Creation Tool:

instrcreate

The initial instrcreate window is shown below.

18-80

instrcreate

This example uses a GPIB object created for a National Instruments
GPIB controller with board index 0, and an oscilloscope with primary
address 1.

Create the Object

Click the New Object button to display the New Object Creation
dialog box.

Specify the object as follows:

18-81

instrcreate

• Instrument Object Type set to GPIB

• Vendor set to ni

• Board Index set to 0

• Primary Address set to 1

Click OK to create the object and dismiss the dialog box.

Configure the Object

Return to the Instrument Control Creation Tool. The Instrument
Object Browser shows the object under the GPIB node.

Select the Configure tab and set the following properties:

• InputBufferSize set to 50000.

• Timeout is to 120.

• BytesAvailableFcn set to @instrcallback

• BytesAvailableFcnMode is set to byte

• BytesAvailableFcnCount is set to 5000.

18-82

instrcreate

These parameters are configured so that the M-file callback function
instrcallback executes every time 5,000 bytes are stored in the input
buffer.

Identifying the Object

You can identify the instrument connected to an instrument object
from the Identify tab. This pane enables you to send the instrument’s
identify command and see the response returned.

Type the instrument’s identify command in the Command used to
identify instrument text field, click on the Identify button, and see
the response in the Instrument Identification field.

Exporting the Object

This example saves the GPIB object to the MATLAB workspace as the
variable g and as the equivalent M-code in an M-file named myGPIB1.m.
To do this, click the Export button to display the Object Exporter.

First, export the object as a variable.

• Set the Object destination to MATLAB Workspace.

• Enter the name of the variable under the Variable Name column.

18-83

instrcreate

• Click the Export button on the Object Exporter.

Next, export the object to an M-file.

• Set the Object destination to M-File.

• Click the Export button on the Object Exporter.

• Enter the file name (myGPIB1.m) in the File name text field of the
Export to M-File dialog box. Then click Save.

After creating and configuring the GPIB object, you can use it to
communicate with your instrument via the command line or via the
Instrument Control Communication Tool, instrcomm. Note that
instrcomm does not support asynchronous read and write operations.
Therefore, the bytes-available events will not be generated.

See Also Functions

instrcomm

18-84

instrfind

Purpose Read instrument objects from memory to MATLAB workspace

Syntax out = instrfind
out = instrfind('PropertyName',PropertyValue,...)
out = instrfind(S)
out = instrfind(obj,'PropertyName',PropertyValue,...)

Arguments 'PropertyName' A property name for obj.

PropertyValue A property value supported by PropertyName.

S A structure of property names and property values.

obj An instrument object, or an array of instrument
objects.

out An array of instrument objects.

Description out = instrfind returns all valid instrument objects as an array to
out.

out = instrfind('PropertyName',PropertyValue,...) returns an
array of instrument objects whose property names and property values
match those specified.

out = instrfind(S) returns an array of instrument objects whose
property names and property values match those defined in the
structure S. The field names of S are the property names, while the field
values are the associated property values.

out = instrfind(obj,'PropertyName',PropertyValue,...) restricts
the search for matching property name/property value pairs to the
instrument objects listed in obj.

Remarks instrfind will not return an instrument object if its ObjectVisibility
property is configured to off.

You must specify property values using the same format as the get
function returns. For example, if get returns the Name property value as

18-85

instrfind

MyObject, instrfind will not find an object with a Name property value
of myobject. However, this is not the case for properties that have a
finite set of string values. For example, instrfind will find an object
with a Parity property value of Even or even. You can use the propinfo
function to determine if a property has a finite set of string values.

You can use property name/property value string pairs, structures, and
cell array pairs in the same call to instrfind.

Examples Suppose you create the following two GPIB objects.

g1 = gpib('ni',0,1);
g2 = gpib('ni',0,2);
g2.EOSCharCode = 'CR';
fopen([g1 g2])

You can use instrfind to return instrument objects based on property
values.

out1 = instrfind('Type','gpib');
out2 = instrfind({'Type','EOSCharCode'},{'gpib','CR'});

You can also use instrfind to return cleared instrument objects to
the MATLAB workspace.

clear g1 g2
newobjs = instrfind

Instrument Object Array
Index: Type: Status: Name:
1 gpib open GPIB0-1
2 gpib open GPIB0-2

Assign the instrument objects their original names.

g1 = newobjs(1);
g2 = newobjs(2);

18-86

instrfind

Close both g1 and g2.

fclose(newobjs)

See Also Functions

clear, get, instrfindall, propinfo

Properties

ObjectVisibility

18-87

instrfindall

Purpose Find visible and hidden instrument objects

Syntax out = instrfindall
out = instrfindall('P1',V1,...)
out = instrfindall(s)
out = instrfindall(objs,'P1',V1,...)

Arguments 'P1' Name of an instrument object property or device group
object property

V1 Value allowed for corresponding P1.

s A structure of property names and property values.

objs An array of instrument objects or device group objects.

out An array of returned instrument objects or device group
objects.

Description out = instrfindall finds all instrument objects and device group
objects, regardless of the value of the objects’ ObjectVisibility
property. The object or objects are returned to out.

out = instrfindall('P1',V1,...) returns an array, out, of
instrument objects and device group objects whose property names and
corresponding property values match those specified as arguments.

out = instrfindall(s) returns an array, out, of instrument objects
whose property names and corresponding property values match those
specified in the structure s, where the field names correspond to
property names and the field values correspond to the current value
of the respective property.

out = instrfindall(objs,'P1',V1,...) restricts the search for
objects with matching property name/value pairs to the instrument
objects and device group objects listed in objs.

18-88

instrfindall

Note that you can use string property name/property value pairs,
structures, and cell array property name/property value pairs in the
same call to instrfindall.

Remarks instrfindall differs from instrfind in that it finds objects whose
ObjectVisibility property is set to off.

Property values are case sensitive. You must specify property
values using the same format as that returned by the get function.
For example, if get returns the Name property value as MyObject,
instrfindall will not find an object with a Name property value of
myobject. However, this is not the case for properties that have a finite
set of string values.

For example, instrfindall will find an object with a Parity property
value of Even or even. You can use the propinfo function to determine
if a property has a finite set of string values.

Examples Suppose you create the following instrument objects.

s1 = serial('COM1');
s2 = serial('COM2');
g1 = gpib('keithley',0,2);
set(g1,'ObjectVisibility','off')

Because object g1 has its ObjectVisibility set to off, it is not visible to
commands like instrfind:

instrfind

Instrument Object Array
Index: Type: Status: Name:
1 serial closed Serial-COM1
2 serial closed Serial-COM2

18-89

instrfindall

However, instrfindall finds all objects regardless of the value of
ObjectVisibility:

instrfindall

Instrument Object Array
Index: Type: Status: Name:
1 serial closed Serial-COM1
2 serial closed Serial-COM2
3 gpib closed GPIB0-2

The following statements use instrfindall to return objects with
specific property settings, which are passed as cell arrays:

props = {'PrimaryAddress','SecondaryAddress};
vals = {2,0};
obj = instrfindall(props,vals);

You can use instrfindall as an argument when you want to apply the
command to all objects, visible and invisible. For example, the following
statement makes all objects visible:

set(instrfindall,'ObjectVisibility','on')

See Also Functions

instrfind, propinfo

Properties

ObjectVisibility

18-90

instrhelp

Purpose Help for instrument object type, function, or property

Syntax instrhelp
instrhelp('name')
out = instrhelp('name')
instrhelp(obj)
instrhelp(obj,'name')
out = instrhelp(obj,'name')

Arguments 'name' A function name, property name, or instrument object
type.

obj An instrument object.

out The help text.

Description instrhelp returns a complete listing of toolbox functions, with a brief
description of each.

instrhelp('name') returns help for the function, property, or
instrument object type specified by name.

You can return specific instrument object information by specifying
name in the form object/function or object.property. For example,
to return the help for a serial port object’s fprintf function, name would
be serial/fprintf. To return the help for a serial port object’s Parity
property, name would be serial.parity.

out = instrhelp('name') returns the help text to out.

instrhelp(obj) returns a complete listing of functions and properties
for obj, with a brief description of each. Help for the constructor is
also returned.

instrhelp(obj,'name') returns help for the function or property
specified by name associated with obj.

out = instrhelp(obj,'name') returns the help text to out.

18-91

instrhelp

Remarks When returning property help, the names in the See Also section that
contain all uppercase letters are function names. The names that
contain a mixture of upper and lowercase letters are property names.
When returning function help, the See Also section contains only
function names.

You can also display help via the Workspace browser by right-clicking
an instrument object, and selecting Instrument Help from the context
menu.

Examples The following commands illustrate some of the ways you can get
function and property help without creating an instrument object.

instrhelp gpib
out = instrhelp('gpib.m');
instrhelp set
instrhelp('gpib/set')
instrhelp EOSCharCode
instrhelp('gpib.eoscharcode')

The following commands illustrate some of the ways you can get
function and property help for an existing instrument object.

g = gpib('ni',0,1);
instrhelp(g)
instrhelp(g,'EOSMode');
out = instrhelp(g,'trigger');

See Also Functions

propinfo

18-92

instrhwinfo

Purpose Information about available hardware

Syntax out = instrhwinfo
out = instrhwinfo('interface')
out = instrhwinfo('drivertype')
out = instrhwinfo('interface','adaptor')
out = instrhwinfo('drivertype','drivername')
out = instrhwinfo('ivi','LogicalName')
out = instrhwinfo('interface','adaptor','type')
out = instrhwinfo(obj)
out = instrhwinfo(obj,'FieldName')

Arguments 'interface' A supported instrument interface.

’drivertype’ Instrument driver type, may be matlab or vxipnp.

'adaptor' A supported GPIB or VISA adaptor.

'drivername' Name of VXIplug&play or MATLAB instrument
driver.

'LogicalName' IVI logical name value.

'type' Type of VISA interface.

obj An instrument object or array of instrument
objects.

'FieldName' A field name or cell array of field names associated
with obj.

out A structure or array containing hardware
information.

Description out = instrhwinfo returns hardware information to the structure
out. This information includes the toolbox version, MATLAB version,
and supported interfaces.

out = instrhwinfo('interface') returns information related to the
interface specified by interface. interface can be serial, gpib,

18-93

instrhwinfo

tcpip, udp, or visa. For the GPIB and VISA interfaces, the information
includes the installed adaptors. For the serial port interface, the
information includes the available ports and the object constructor
name. For the TCP/IP and UDP interfaces, the information includes the
local host address.

out = instrhwinfo('drivertype') returns a structure, out, which
contains information related to the specified driver type, drivertype.
drivertype can be matlab, vxipnp, or ivi. If drivertype is matlab,
this information includes the MATLAB instrument drivers found on the
MATLAB path. If drivertype is vxipnp, this information includes the
found VXIplug&play drivers. If drivertype is ivi, this information
includes the available logical names and information on the IVI
configuration store.

out = instrhwinfo('interface','adaptor') returns information
related to the adaptor specified by adaptor, and for the interface
specified by interface. interface can be gpib or visa. The returned
information includes the adaptor version and available hardware. The
GPIB adaptors are advantech, agilent, cec, contec, ics, iotech,
keithley, mcc, and ni. The VISA adaptors are agilent, ni, and tek.

out = instrhwinfo('drivertype','drivername') returns a
structure, out, which contains information related to the specified
driver, drivername, for the specified drivertype. drivertype can be
set to matlab, or vxipnp. The available drivername values are returned
by out = instrhwinfo('drivertype').

out = instrhwinfo('ivi','LogicalName') returns a structure,
out, which contains information related to the specified logical name,
LogicalName. The available logical name values are returned by
instrhwinfo('ivi').

out = instrhwinfo('interface','adaptor','type') returns a
structure, out, which contains information on the specified type, type.
interface can only be visa. adaptor can be agilent, ni, or tek. type
can be gpib, vxi, gpib-vxi, serial, or rsib.

out = instrhwinfo(obj) returns information on the adaptor and
vendor-supplied DLL associated with the VISA or GPIB object obj. If

18-94

instrhwinfo

obj is a serial port, TCPIP, or UDP object, then JAR file information is
returned. If obj is an array of instrument objects, then out is a 1-by-n
cell array of structures where n is the length of obj.

out = instrhwinfo(obj,'FieldName') returns hardware information
for the field name specified by FieldName. FieldName can be a single
string or a cell array of strings. out is an m-by-n cell array where m is
the length of obj and n is the length of FieldName. You can return the
supported values for FieldName using the instrhwinfo(obj) syntax.

Remarks You can also display hardware information via the Workspace
browser by right-clicking an instrument object, and selecting Display
Hardware Info from the context menu.

Examples The following commands illustrate some of the ways you can get
hardware-related information without creating an instrument object.

out1 = instrhwinfo;
out2 = instrhwinfo('serial');
out3 = instrhwinfo('gpib','ni');
out4 = instrhwinfo('visa','agilent');

The following commands illustrate some of the ways you can get
hardware-related information for an existing instrument object.

vs = visa('agilent','ASRL1::INSTR');
out5 = instrhwinfo(vs)
out5 =

AdaptorDllName: [1x67 char]
AdaptorDllVersion: 'Version 1.2 (R13)'

AdaptorName: 'AGILENT'
VendorDriverDescription: 'Agilent Technologies VISA Driver'

VendorDriverVersion: '1.1000'

vsdll = instrhwinfo(vs,'AdaptorDllName')
vsdll = D:\V6\toolbox\instrument\instrumentadaptors\win32\
mwagilentvisa.dll

18-95

instrid

Purpose Define and retrieve commands that identify instruments

Syntax instrid
instrid('cmd')
out = instrid(...)

Arguments cmd The instrument identification command.

out The list of commands used to locate and identify
instruments.

Description instrid returns the currently defined instrument identification
commands.

instrid('cmd') defines the instruments identification commands to be
the string cmd. Note that you can also specify a cell array of commands.

out = instrid(...) returns the instrument identification commands
to out.

Remarks The Instrument Control Toolbox instrhwinfo and tmtool functions use
the instrument identification commands as defined by instrid when
locating and identifying instruments.

By default, the Instrument Control Toolbox uses the command *IDN?,
which identifies most instruments. However, some instruments respond
to different identification commands such as *ID? or *IDEN?.

If instrhwinfo or tmtool does not identify a known instrument, use
instrid to specify the identification commands the instrument will
respond to. If instrid returns no commands, an instrument cannot
be found.

Examples Set the identification command to *ID?.

instrid('*ID?')

18-96

instrid

Specify three new identification commands using a cell array.

instrid({'*IDN?','*ID?','IDEN?'})

Assign a list of current identification commands to an output variable.

id_commands = instrid;

See Also instrhwinfo, tmtool

18-97

instrnotify

Purpose Define notification for instrument events

Syntax instrnotify('Type', callback)
instrnotify({'P1', 'P2', ...}, 'Type', callback)
instrnotify(obj, 'Type', callback)
instrnotify(obj, {'P1', 'P2', ...}, 'Type', callback)
instrnotify('Type', callback, '-remove')
instrnotify(obj, 'Type', callback, '-remove')

Arguments 'Type' The type of event: ObjectCreated, ObjectDeleted,
or PropertyChangedPostSet

callback Function handle, string, or cell array to evaluate.

'P1', P2',
...

Any number of object property names.

obj Instrument object or device group object.

'-remove' Argument to remove specified callback.

Description instrnotify('Type', callback) evaluates the MATLAB expression,
callback, in the MATLAB workspace when an event of type Type
is generated. Type can be ObjectCreated, ObjectDeleted, or
PropertyChangedPostSet.

If Type is ObjectCreated, callback is evaluated each time an
instrument object or a device group object is created. If Type is
ObjectDeleted, callback is evaluated each time an instrument object
or a device group object is deleted. If Type is PropertyChangedPostSet,
callback is evaluated each time an instrument object or device group
object property is configured with set.

callback can be

• A function handle

• A string to be evaluated

18-98

instrnotify

• A cell array containing the function to evaluate in the first cell
(function handle or name of function) and extra arguments to pass to
the function in subsequent cells

The callback function is invoked with

function(obj, event, [arg1, arg2,...])

where obj is the instrument object or device group object generating
the event. event is a structure containing information on the event
generated. If Type is ObjectCreated or ObjectDeleted, event contains
the type of event. If Type is PropertyChangedPostSet, event contains
the type of event, the property being configured, and the new property
value.

instrnotify({'P1', 'P2', ...}, 'Type', callback) evaluates the
MATLAB expression, callback, in the MATLAB workspace when any
of the specified properties, P1, P2, ... are configured. Type can be only
PropertyChangedPostSet.

instrnotify(obj, 'Type', callback) evaluates the MATLAB
expression, callback, in the MATLAB workspace when an event of type
Type for object obj, is generated. obj can be an array of instrument
objects or device group objects.

instrnotify(obj, {'P1', 'P2', ...}, 'Type', callback)
evaluates the MATLAB expression, callback, in the MATLAB
workspace when any of the specified properties, P1, P2, are configured
on object obj.

instrnotify('Type', callback, '-remove') removes the specified
callback of type Type.

instrnotify(obj, 'Type', callback, '-remove') removes the
specified callback of type Type for object obj.

Remarks PropertyChangedPostSet events are generated only when the
property is configured to a different value than what the property is
currently configured to. For example, if a GPIB object’s Tag property is
configured to 'myobject', a PropertyChangedPostSet event will not

18-99

instrnotify

be generated if the object’s Tag property is currently set to 'myobject'.
A PropertyChangedPostSet event will be generated if the object’s Tag
property is set to 'myGPIBObject'.

If obj is specified and the callback Type is ObjectCreated, the callback
will not be generated because obj has already been created.

If Type is ObjectDeleted, the invalid object obj is not passed as the
first input argument to the callback function. Instead, an empty
matrix is passed as the first input argument.

Examples instrnotify('PropertyChangedPostSet', @instrcallback);
g = gpib('keithley', 0, 5);
set(g, 'Name', 'mygpib');
fopen(g);
fclose(g);
instrnotify('PropertyChangedPostSet',@instrcallback,'-remove');

18-100

instrreset

Purpose Disconnect and delete all instrument objects

Syntax instrreset

Description instrreset disconnects and deletes all instrument objects.

Remarks If data is being written or read asynchronously, the asynchronous
operation is stopped.

instrreset is equivalent to issuing the stopasync (if needed), fclose,
and delete functions for all instrument objects.

When you delete an instrument object, it becomes invalid. Because you
cannot connect an invalid object to the instrument, you should remove
it from the workspace with the clear command.

See Also Functions

clear, delete, fclose, isvalid, stopasync

18-101

invoke

Purpose Execute driver-specific function on device object

Syntax out = invoke(obj,'name')
out = invoke(obj,'name',arg1,arg2,...)

Arguments obj A device object.

name The function to execute.

arg1,arg2,... Arguments passed to name.

out The function output.

Description out = invoke(obj,'name') executes the function specified by name on
the device object specified by obj. The function’s output is returned
to out.

out = invoke(obj,'name',arg1,arg2,...) passes the arguments
arg1,arg2,... to the function specified by name.

Remarks To list the driver-specific functions supported by obj, type

methods(obj)

To display help for a specific function, type

instrhelp(obj,'name')

Examples Create a device object for a Tektronix TDS 210 oscilloscope that is
connected to a National Instruments GPIB board.

g = gpib('ni',0,2);
d = icdevice('tektronix_tds210',g);

Perform a self-calibration for the oscilloscope by invoking the calibrate
function.

out = invoke(d,'calibrate')

18-102

invoke

out =
'0'

0 indicates that the self-calibration completed without any errors.

See Also Functions

instrhelp, methods

Properties

Status

18-103

isvalid

Purpose Determine whether instrument objects are valid

Syntax out = isvalid(obj)

Arguments obj An instrument object or array of instrument objects.

out A logical array.

Description out = isvalid(obj) returns the logical array out, which contains a 0
where the elements of obj are invalid instrument objects and a 1 where
the elements of obj are valid instrument objects.

Remarks obj becomes invalid after it is removed from memory with the
delete function. Because you cannot connect an invalid object to the
instrument, you should remove it from the workspace with the clear
command.

Examples Suppose you create the following two GPIB objects:

g1 = gpib('ni',0,1);
g2 = gpib('ni',0,2);

g2 becomes invalid after it is deleted.

delete(g2)

isvalid verifies that g1 is valid and g2 is invalid.

garray = [g1 g2];
isvalid(garray)
ans =

1 0

See Also Functions

clear, delete

18-104

iviconfigurationstore

Purpose Create IVI configuration store object

Syntax obj = iviconfigurationstore
obj = iviconfigurationstore('file')

Arguments obj IVI configuration store object

'file'Configuration store data file

Description obj = iviconfigurationstore creates an IVI configuration store
object and establishes a connection to the IVI Configuration Server. The
data in the master configuration store is used.

obj = iviconfigurationstore('file') creates an IVI configuration
store object and establishes a connection to the IVI Configuration
Server. The data in the configuration store, file, is used. If file
cannot be found or is not a valid configuration store, an error occurs.

See Also Functions

iviconfigurationstore/add, iviconfigurationstore/commit,
iviconfigurationstore/remove, iviconfigurationstore/update

18-105

length

Purpose Length of instrument object array

Syntax length(obj)

Arguments obj An instrument object or an array of instrument objects.

Description length(obj) returns the length of obj. It is equivalent to the command
max(size(obj)).

See Also Functions

instrhelp, size

18-106

load

Purpose Load instrument objects and variables into MATLAB workspace

Syntax load filename
load filename obj1 obj2 ...
out = load('filename','obj1','obj2',...)

Arguments filename The MAT-file name.

obj1 obj2 ... Instrument objects or arrays of instrument
objects.

out A structure containing the specified instrument
objects.

Description load filename returns all variables from the MAT-file specified by
filename into the MATLAB workspace.

load filename obj1 obj2 ... returns the instrument objects
specified by obj1 obj2... from the MAT-file filename into the
MATLAB workspace.

out = load('filename','obj1','obj2',...) returns the specified
instrument objects from the MAT-file filename as a structure to out
instead of directly loading them into the workspace. The field names in
out match the names of the loaded instrument objects.

Remarks Values for read-only properties are restored to their default values upon
loading. For example, the Status property is restored to closed. To
determine if a property is read-only, examine its reference pages or
use the propinfo function.

Examples Suppose you create the GPIB objects g1 and g2, configure a few
properties for g1, and connect both objects to their associated
instruments.

g1 = gpib('ni',0,1);
g2 = gpib('ni',0,2);

18-107

load

set(g1,'EOSMode','read','EOSCharCode','CR')
fopen([g1 g2])

The read-only Status property is automatically configured to open.

get([g1 g2],'Status')
ans =

'open'
'open'

Save g1 and g2 to the file MyObject.mat, and then load the objects into
the MATLAB workspace.

save MyObject g1 g2
load MyObject g1 g2

Values for read-only properties are restored to their default values upon
loading, while all other property values are honored.

get([g1 g2],{'EOSMode','EOSCharCode','Status'})
ans =

'read' 'CR' 'closed'
'none' 'LF' 'closed'

See Also Functions

instrhelp, propinfo, save

18-108

makemid

Purpose Convert driver to MATLAB instrument driver format

Syntax makemid('driver')
makemid('driver', 'filename')
makemid('driver', 'type')
makemid('driver', 'filename', 'type')
makemid('driver', 'type', 'interface')
makemid('driver', 'filename', 'type', 'interface')

Arguments 'driver' Name of driver being converted.

'filename' Name of file that the converted driver is saved to.
You may specify a full pathname. If an extension
is not specified, the .mdd extension is used.

'type' The type of driver the function looks for. By
default, the function searches among all types.

'interface' The IVI-COM interface to be used.

Description makemid('driver') searches through known driver types for driver
and creates a MATLAB instrument driver representation of the driver.
Known driver types include VXIplug&play, IVI-C, and IVI-COM.
For driver you can use a Module (for IVI-C), a ProgramID (for
IVI-COM), a LogicalName (for either IVI-C or IVI-COM), or the original
VXIplug&play instrument driver name. The MATLAB instrument
driver will be saved in the current working directory as driver.mdd

The MATLAB instrument driver can then be modified using midedit to
customize the driver behavior, and may be used to instantiate a device
object using icdevice.

makemid('driver', 'filename') creates and saves the MATLAB
instrument driver using the name and path specified by filename.

makemid('driver', 'type') and makemid('driver', 'filename',
'type') override the default search order and look only for drivers
whose type is type. Valid types are vxiplug&play, ivi-c, and ivi-com.

18-109

makemid

makemid('driver', 'type', 'interface') and makemid('driver',
'filename', 'type', 'interface') specify the IVI-COM driver
interface to be used for the object. type must be ivi-com.

The function searches for the specified driver root interface. For
example, if the driver supports the IIviScope interface, an interface
value of IIviScope results in a device object that only contains the
IVIScope class-compliant properties and methods.

Examples To convert the driver hp34401 into the MATLAB instrument driver
hp34401.mdd in the current working directory,

makemid('hp34401');

To convert the driver tktds5k into the MATLAB instrument driver
with a specific name and location,

makemid('tktds5k', 'C:\MyDrivers\tektronix_5k.mdd');

To convert the IVI-C driver tktds5k into the MATLAB instrument
driver tktds5k.mdd in the current working directory. This example
causes the function to look for the driver only among the IVI-C drivers.

makemid('tktds5k', 'ivi-c');

To create the MATLAB instrument driver MyIviLogicalName.mdd from
the IVI logical name MyIviLogicalName,

makemid('MyIviLogicalName');

See Also Functions

icdevice, midedit

18-110

memmap

Purpose Map memory for low-level memory read and write operations

Syntax memmap(obj,'adrspace',offset,size)

Arguments obj A VISA-VXI or VISA-GPIB-VXI object.

'adrspace' The memory address space.

offset Offset for the memory address space.

size Number of bytes to map.

Description memmap(obj,'adrspace',offset,size) maps the amount of memory
specified by size in address space, adrspace with an offset, offset.
You can configure adrspace to A16 (A16 address space), A24 (A24
address space), or A32 (A32 address space).

Remarks Before you can map memory, obj must be connected to the instrument
with the fopen function. A connected interface object has a Status
property value of open. An error is returned if you attempt to map
memory while obj is not connected to the instrument.

To unmap the memory, use the memunmap function. If memory is mapped
and fclose is called, the memory is unmapped before the object is
disconnected from the instrument.

The MappedMemorySize property returns the size of the memory space
mapped. You must map the memory space before using the mempoke
or mempeek function.

Examples Create the VISA-VXI object vv associated with a VXI chassis with index
0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

18-111

memmap

Use memmap to map 16 bytes in the A16 address space.

memmap(vv,'A16',0,16)

Read the first and second instrument registers.

reg1 = mempeek(vv,0,'uint16');
reg2 = mempeek(vv,2,'uint16');

Unmap the memory and disconnect vv from the instrument.

memunmap(vv)
fclose(vv)

See Also Functions

fopen, fclose, mempeek, mempoke, memunmap

Properties

MappedMemorySize, Status

18-112

mempeek

Purpose Low-level memory read from VXI register

Syntax out = mempeek(obj,offset)
out = mempeek(obj,offset,'precision')

Arguments obj A VISA-VXI or VISA-GPIB-VXI object.

offset The offset in the mapped memory space from which
the data is read.

'precision' The number of bits to read from the memory
address.

out An array containing the returned value.

Description out = mempeek(obj,offset) reads a uint8 value from the mapped
memory space specified by offset for the object obj. The value is
returned to out.

out = mempeek(obj,offset,'precision') reads the number of bits
specified by precision, from the mapped memory space specified by
offset. precision can be uint8, uint16, or uint32, which instructs
mempeek to read 8-, 16-, or 32-bit values, respectively. precision can
also be single, which instructs mempeek to read single precision values.

Remarks Before you can read from the VXI register, obj must be connected to the
instrument with the fopen function. A connected interface object has a
Status property value of open. An error is returned if you attempt a
read operation while obj is not connected to the instrument.

You must map the memory space using the memmap function before
using mempeek. The MappedMemorySize property returns the size of
the memory space mapped.

offset indicates the offset in the mapped memory space from which
the data is read. For example, if the mapped memory space begins at
200H, the offset is 2, and the precision is uint8, then the data is read

18-113

mempeek

from memory location 202H. If the precision is uint16, the data is read
from 202H and 203H.

To increase speed, mempeek does not return error messages from the
instrument.

Examples Create the VISA-VXI object vv associated with a VXI chassis with
index 0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Use memmap to map 16 bytes in the A16 address space.

memmap(vv,'A16',0,16)

Perform a low-level read of the first and second instrument registers.

reg1 = mempeek(vv,0,'uint16')
reg1 =

53247
reg2 = mempeek(vv,2,'uint16')
reg2 =

20993

Unmap the memory and disconnect vv from the instrument.

memunmap(vv)
fclose(vv)

Refer to “Example: Using High-Level Memory Functions” on page 5-16
for a description of the first four registers of the E1432A digitizer.

See Also Functions

fopen, memmap, mempoke, memunmap

Properties

MappedMemorySize, MemoryIncrement, Status

18-114

mempoke

Purpose Low-level memory write to VXI register

Syntax mempoke(obj,data,offset)
mempoke(obj,data,offset,'precision')

Arguments obj A VISA-VXI or VISA-GPIB-VXI object.

data The data written to the memory address.

offset The offset in the mapped memory space to which
the data is written.

'precision' The number of bits to write to the memory address.

Description mempoke(obj,data,offset) writes the uint8 value specified by data
to the mapped memory address specified by offset for the object obj.

mempoke(obj,data,offset,'precision') writes data using the
number of bits specified by precision. precision can be uint8,
uint16, or uint32, which instructs mempoke to write data as 8-, 16-,
or 32-bit values, respectively. precision can also be single, which
instructs mempoke to write data as single-precision values.

Remarks Before you can write to the VXI register, obj must be connected to the
instrument with the fopen function. A connected interface object has a
Status property value of open. An error is returned if you attempt a
write operation while obj is not connected to the instrument.

You must map the memory space using the memmap function before
using mempoke. The MappedMemorySize property returns the size of
the memory space mapped.

offset indicates the offset in the mapped memory space to which the
data is written. For example, if the mapped memory space begins at
200H, the offset is 2, and the precision is uint8, then the data is written
to memory location 202H. If the precision is uint16, the data is written
to 202H and 203H.

18-115

mempoke

To increase speed, mempoke does not return error messages from the
instrument.

Examples Create the VISA-VXI object vv associated with a VXI chassis with index
0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Use memmap to map 16 bytes in the A16 address space.

memmap(vv,'A16',0,16)

Perform a low-level write to the fourth instrument register, which has
an offset of 6.

mempoke(vv,45056,6,'uint16')

Unmap the memory and disconnect vv from the instrument.

memunmap(vv)
fclose(vv)

Refer to “Example: Using High-Level Memory Functions” on page 5-16
for a description of the first four registers of the E1432A digitizer.

See Also Functions

fopen, memmap, mempeek

Properties

MappedMemorySize, MemoryIncrement, Status

18-116

memread

Purpose High-level memory read from VXI register

Syntax out = memread(obj)
out = memread(obj,offset)
out = memread(obj,offset,'precision')
out = memread(obj,offset,'precision','adrspace')
out = memread(obj,offset,'precision','adrspace',size)

Arguments obj A VISA-VXI or VISA-GPIB-VXI object.

offset Offset for the memory address space.

'precision' The number of bits to read from the memory address.

'adrspace' The memory address space.

offset Offset for the memory address space.

size The size of the data block to read.

out An array containing the returned value.

Description out = memread(obj) reads a uint8 value from the A16 address space
with an offset of 0 for the object obj.

out = memread(obj,offset) reads a uint8 value from the A16
address space with an offset specified by offset. You must specify
offset as a decimal value.

out = memread(obj,offset,'precision') reads the number of bits
specified by precision from the A16 address space. precision can
be uint8, uint16, or uint32, which instructs memread to read 8-, 16-,
or 32-bit values, respectively. precision can also be single, which
instructs memread to read single-precision values.

out = memread(obj,offset,'precision','adrspace') reads the
specified number of bits from the address space specified by adrspace.
adrspace can be A16, A24, or A32. The MemorySpace property indicates
which VXI address spaces are used by the instrument.

18-117

memread

out = memread(obj,offset,'precision','adrspace',size) reads a
block of data with a size specified by size.

Remarks Before you can read data from the VXI register, obj must be connected
to the instrument with the fopen function. A connected interface object
has a Status property value of open. An error is returned if you attempt
to read memory while obj is not connected to the instrument.

Examples Create the VISA-VXI object vv associated with a VXI chassis with index
0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Perform a high-level read of the first instrument register.

reg1 = memread(vv,0,'uint16')
reg1 =

53247

Perform a high-level read of the next three instrument registers.

reg24 = memread(vv,2,'uint16','A16',3)
reg24 =

20993
50012
40960

Disconnect vv from the instrument.

fclose(vv)

Refer to “Example: Using High-Level Memory Functions” on page 5-16
for a description of the first four registers of the E1432A digitizer.

See Also Functions

fopen, mempeek, memwrite

18-118

memread

Properties

MemoryIncrement, MemorySpace, Status

18-119

memunmap

Purpose Unmap memory for low-level memory read and write operations

Syntax memunmap(obj)

Arguments obj A VISA-VXI or VISA-GPIB-VXI object.

Description memunmap(obj) unmaps memory space previously mapped by the
memmap function.

Remarks When the memory space is unmapped, the MappedMemorySize property
is set to 0 and the MappedMemoryBase property is set to 0H.

Examples Create the VISA-VXI object vv associated with a VXI chassis with index
0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Map 16 bytes in the A16 address space.

memmap(vv,'A16',0,16)

Read the first and second instrument registers.

reg1 = mempeek(vv,0,'uint16');
reg2 = mempeek(vv,2,'uint16');

Use memunmap to unmap the memory, and disconnect vv from the
instrument.

memunmap(vv)
fclose(vv)

See Also Functions

memmap, mempeek, mempoke

18-120

memunmap

Properties

MappedMemoryBase, MappedMemorySize

18-121

memwrite

Purpose High-level memory write to VXI register

Syntax memwrite(obj,data)
memwrite(obj,data,offset)
memwrite(obj,data,offset,'precision')
memwrite(obj,data,offset,'precision','adrspace')

Arguments obj A VISA-VXI or VISA-GPIB-VXI object.

data The data written to the memory address.

offset Offset for the memory address space.

'precision' The number of bits to write to the memory address.

'adrspace' The memory address space.

Description memwrite(obj,data) writes the uint8 value specified by data to the
A16 address space with an offset of 0 for the object obj. data can be
an array of uint8 values.

memwrite(obj,data,offset) writes data to the A16 address space
with an offset specified by offset. offset is specified as a decimal
value.

memwrite(obj,data,offset,'precision') writes data with precision
specified by precision. precision can be uint8, uint16, or uint32,
which instructs memwrite to write data as 8-, 16-, or 32-bit values,
respectively. precision can also be single, which instructs memwrite
to write data as single-precision values.

memwrite(obj,data,offset,'precision','adrspace') writes data to
the address space specified by adrspace. adrspace can be A16, A24, or
A32. The MemorySpace property indicates which VXI address spaces
are used by the instrument.

Remarks Before you can write to the VXI register, obj must be connected to the
instrument with the fopen function. A connected interface object has a

18-122

memwrite

Status property value of open. An error is returned if you attempt a
write operation while obj is not connected to the instrument.

Examples Create the VISA-VXI object vv associated with a VXI chassis with index
0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Perform a high-level write to the fourth instrument register, which
has an offset of 6.

memwrite(vv,45056,6,'uint16','A16')

Disconnect vv from the instrument.

fclose(vv)

Refer to “Example: Using High-Level Memory Functions” on page 5-16
for a description of the first four registers of the E1432A digitizer.

See Also Functions

fopen, memread, mempoke

Properties

MemoryIncrement, MemorySpace, Status

18-123

methods

Purpose Class method names and descriptions

Syntax m = methods('classname')
m = methods(object)
m = methods(...,'-full')

Arguments m Cell array of strings

'classname' Class whose methods are returned

object An instrument object or device group object

'-full' Request to return full descriptions of methods

Description m = methods('classname') returns, in a cell array of strings, the
names of all methods for the class with the name classname.

m = methods(object) returns the names of all methods for the class of
which object is an instance.

m = methods(...,'-full') returns full descriptions of the methods in
the class, including inheritance information and, for Java methods,
also attributes and signatures. Duplicate method names with different
signatures are not removed. If classname represents a MATLAB class,
then inheritance information is returned only if that class has been
instantiated.

Remarks methods differs from what in that the methods from all method
directories are reported together, and methods removes all duplicate
method names from the result list. methods will also return the
methods for a Java class.

See Also Functions

methodsview, what, which, help

18-124

midedit

Purpose Open graphical tool for creating and editing MATLAB instrument driver

Syntax midedit
midedit('driver')

Arguments 'driver' The name of a MATLAB instrument driver.

Description midedit opens the MATLAB Instrument Driver Editor, which is a
graphical tool for creating and editing instrument drivers.

midedit('driver') opens the MATLAB Instrument Driver Editor for
the specified instrument driver. The default extension for driver is .mdd.
Note that driver can include a relative partial pathname.

The editor consists of two main parts: the navigation pane and the
detail pane. The navigation pane lists the driver-specific properties and
functions in a tree view, while the detail pane allows you to configure
and document the properties and functions.

midedit may also be used to import VXIplug&play or IVI drivers. With
midedit open, select Import from the File menu. The import process
creates a new MATLAB Instrument Driver based on the VXIplug&play
or IVI driver. This allows you to customize the behavior of device objects
that use the VXIplug&play or IVI driver.

For details and examples on the MATLAB Instrument Driver Editor,
see Chapter 14, “The Instrument Driver Editor”.

See Also icdevice, makemid, midtest, tmtool

18-125

midtest

Purpose Open graphical tool for testing MATLAB instrument driver

Syntax midtest
midtest('file')

Arguments 'file' File containing the test to be used by the MATLAB
Instrument Driver Testing Tool

Description midtest opens the MATLAB Instrument Driver Testing Tool. The
MATLAB Instrument Driver Testing Tool provides a graphical
environment for creating a test to verify the functionality of a MATLAB
instrument driver.

The MATLAB Instrument Driver Testing Tool provides a way to

• Verify property behavior

• Verify function behavior

• Save the test as MATLAB code

• Export the test results to MATLAB workspace, figure window,
MAT-file, or the MATLAB array editor

• Save test results as an HTML page

midtest('file') opens the MATLAB Instrument Driver Testing Tool
with the test loaded from file.

For a full description of the tool with examples, see Chapter 15, “The
Instrument Driver Testing Tool”.

Examples midtest('test.xml')

opens the MATLAB Instrument Driver Testing Tool with the test
test.xml loaded.

See Also icdevice, makemid, midedit, tmtool

18-126

obj2mfile

Purpose Convert instrument object to MATLAB code

Syntax obj2mfile(obj,'filename')
obj2mfile(obj,'filename','syntax')
obj2mfile(obj,'filename','mode')
obj2mfile(obj,'filename','syntax','mode')
obj2mfile(obj,'filename','reuse')
obj2mfile(obj,'filename','syntax','mode','reuse')

Arguments obj An instrument object or an array of instrument
objects.

'filename' The name of the file that the MATLAB code is
written to. You can specify the full pathname. If an
extension is not specified, the .m extension is used.

'syntax' Syntax of the converted MATLAB code. By default,
the set syntax is used. If dot is specified, then the
dot notation is used.

'mode' Specifies whether all properties are converted to
code, or only modified properties are converted to
code.

'reuse' Specifies whether existing object is reused or new
object is created.

Description obj2mfile(obj,'filename') converts obj to the equivalent MATLAB
code using the set syntax and saves the code to filename. Only those
properties not set to their default value are saved.

obj2mfile(obj,'filename','syntax') converts obj to the equivalent
MATLAB code using the syntax specified by syntax. You can specify
syntax to be set or dot. set uses the set syntax, while dot uses the
dot notation.

obj2mfile(obj,'filename','mode') converts the properties specified
by mode. You can specify mode to be all or modified. If mode is all,

18-127

obj2mfile

then all properties are converted to code. If mode is modified, then only
those properties not set to their default value are converted to code.

obj2mfile(obj,'filename','syntax','mode') converts the specified
properties to code using the specified syntax.

obj2mfile(obj,'filename','reuse')

obj2mfile(obj,'filename','syntax','mode','reuse') check for an
existing instrument object, obj, before creating obj. If reuse is reuse,
the object is used if it exists, otherwise the object is created. If reuse is
create, the object is always created. By default, reuse is reuse.

An object will be reused if the existing object has the same constructor
arguments as the object about to be created, and if their Type and Tag
property values are the same.

Remarks You can recreate a saved instrument object by typing the name of the
M-file at the MATLAB command line.

If the UserData property is not empty or if any of the callback properties
are set to a cell array of values or a function handle, then the data
stored in those properties is written to a MAT-file when the instrument
object is converted and saved. The MAT-file has the same name as the
M-file containing the instrument object code (see the example below).

Read-only properties are restored with their default values. For
example, suppose an instrument object is saved with a Status property
value of open. When the object is recreated, Status is set to its default
value of closed.

Examples Suppose you create the GPIB object g, and configure several property
values.

g = gpib('ni',0,1);
set(g,'Tag','MyGPIB object','EOSMode','read','EOSCharCode','CR')
set(g,'UserData',{'test',2,magic(10)})

18-128

obj2mfile

The following command writes MATLAB code to the files MyGPIB.m
and MyGPIB.mat.

obj2mfile(g,'MyGPIB.m','dot')

MyGPIB.m contains code that recreates the commands shown above
using the dot notation for all properties that have their default values
changed. Because UserData is set to a cell array of values, this property
appears in MyGPIB.m as

obj1.UserData = userdata1;

It is saved in MyGPIB.mat as

userdata = {'test', 2, magic(10)};

To recreate g in the MATLAB workspace using a new variable, gnew,

gnew = MyGPIB;

The associated MAT-file, MyGPIB.mat, is automatically run and
UserData is assigned the appropriate values.

gnew.UserData
ans =

'test' [2] [10x10 double]

See Also Functions

propinfo

18-129

propinfo

Purpose Instrument object property information

Syntax out = propinfo(obj)
out = propinfo(obj,'PropertyName')

Arguments obj An instrument object.

'PropertyName' A property name or cell array of property names.

out A structure containing property information.

Description out = propinfo(obj) returns the structure out with field names given
by the property names for obj. Each property name in out contains the
fields shown below.

Field Name Description

Type The property data type. Possible values are any,
ASCII value, callback, instrument range
value, double, string, and struct.

Constraint The type of constraint on the property value.
Possible values are ASCII value, bounded,
callback, instrument range value, enum, and
none.

ConstraintValue Property value constraint. The constraint can
be a range of valid values or a list of valid string
values.

DefaultValue The property default value.

ReadOnly The condition under which a property is
read-only. Possible values are always, never,
whileOpen, and whileRecording.

Interface
Specific

If the property is interface-specific, a 1 is
returned. If a 0 is returned, the property is
supported for all interfaces.

18-130

propinfo

out = propinfo(obj,'PropertyName') returns the structure out for
the property specified by PropertyName. The field names of out are
given in the table shown above. If PropertyName is a cell array of
property names, a cell array of structures is returned for each property.

Remarks You can get help for instrument object properties with the instrhelp
function.

You can display all instrument object property names and their
current values using the get function. You can display all configurable
properties and their possible values using the set function.

When specifying property names, you can do so without regard to case,
and you can make use of property name completion. For example, if g is
a GPIB object, then the following commands are all valid.

out = propinfo(g,'EOSMode');
out = propinfo(g,'eosmode');
out = propinfo(g,'EOSM');

Examples To return all property information for the GPIB object g,

g = gpib('ni',0,1);
out = propinfo(g);

To display all the property information for the InputBufferSize
property,

out.InputBufferSize
ans =

Type: 'double'
Constraint: 'none'

ConstraintValue: ''
DefaultValue: 512

ReadOnly: 'whileOpen'
InterfaceSpecific: 0

18-131

propinfo

To display the default value for the EOSMode property,

out.EOSMode.DefaultValue
ans =
none

See Also Functions

get, instrhelp, set

18-132

query

Purpose Write text to instrument, and read data from instrument

Syntax out = query(obj,'cmd')
out = query(obj,'cmd','wformat')
out = query(obj,'cmd','wformat','rformat')
[out,count] = query(...)
[out,count,msg] = query(...)
[out,count,msg,datagramaddress,datagramport] = query(...)

Arguments obj An interface object.

'cmd' String that is written to the instrument.

'wformat' Format for written data.

'rformat' Format for read data.

out Contains data read from the instrument.

count The number of values read.

msg A message indicating if the read operation was
unsuccessful.

datagramaddress The datagram address.

datagramport The datagram port.

Description out = query(obj,'cmd') writes the string cmd to the instrument
connected to obj. The data read from the instrument is returned to
out. By default, the %s\n format is used for cmd, and the %c format is
used for the returned data.

out = query(obj,'cmd','wformat') writes the string cmd using the
format specified by wformat.

wformat is a C language conversion specification. Conversion
specifications involve the % character and the conversion characters d,
i, o, u, x, X, f, e, E, g, G, c, and s. Refer to the sprintf file I/O format
specifications or a C manual for more information.

18-133

query

out = query(obj,'cmd','wformat','rformat') writes the string
cmd using the format specified by wformat. The data read from the
instrument is returned to out using the format specified by rformat.

rformat is a C language conversion specification. The supported
conversion specifications are identical to those supported by wformat.

[out,count] = query(...) returns the number of values read to
count.

[out,count,msg] = query(...) returns a warning message to msg if
the read operation did not complete successfully.

[out,count,msg,datagramaddress,datagramport] = query(...)
returns the remote address and port from which the datagram
originated. These values are returned only when using a UDP object.

Remarks Before you can write or read data, obj must be connected to the
instrument with the fopen function. A connected interface object has a
Status property value of open. An error is returned if you attempt to
perform a query operation while obj is not connected to the instrument.

query operates only in synchronous mode, and blocks the command line
until the write and read operations complete execution.

Using query is equivalent to using the fprintf and fgets functions.
The rules for completing a write operation are described in the fprintf
reference pages. The rules for completing a read operation are described
in the fgets reference pages.

Examples This example creates the GPIB object g, connects g to a Tektronix TDS
210 oscilloscope, writes and reads text data using query, and then
disconnects g from the instrument.

g = gpib('ni',0,1);
fopen(g)
idn = query(g,'*IDN?')
idn =
TEKTRONIX,TDS 210,0,CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04
fclose(g)

18-134

query

See Also Functions

fopen, fprintf, fgets, sprintf

Properties

Status

18-135

readasync

Purpose Read data asynchronously from instrument

Syntax readasync(obj)
readasync(obj,size)

Arguments obj An interface object.

size The number of bytes to read from the instrument.

Description readasync(obj) initiates an asynchronous read operation.

readasync(obj,size) asynchronously reads, at most, the number of
bytes specified by size. If size is greater than the difference between
the InputBufferSize property value and the BytesAvailable property
value, an error is returned.

Remarks Before you can read data, you must connect obj to the instrument with
the fopen function. A connected interface object has a Status property
value of open. An error is returned if you attempt to perform a read
operation while obj is not connected to the instrument.

For serial port, TCPIP, UDP, and VISA-serial objects, you should use
readasync only when you configure the ReadAsyncMode property
to manual. readasync is ignored if used when ReadAsyncMode is
continuous.

The TransferStatus property indicates if an asynchronous read or
write operation is in progress. For all interface objects, you cannot use
readasync while a read operation is in progress. For serial port and
VISA-serial objects, you can write data while an asynchronous read is
in progress because serial ports have separate read and write pins. You
can stop asynchronous read and write operations with the stopasync
function.

You can monitor the amount of data stored in the input buffer
with the BytesAvailable property. Additionally, you can use the

18-136

readasync

BytesAvailableFcn property to execute an M-file callback function
when the terminator or the specified amount of data is read.

Rules for Completing an Asynchronous Read Operation

An asynchronous read operation with readasync completes when one
of these conditions is met:

• The terminator is read. For serial port, TCPIP, UDP, and VISA-serial
objects, the terminator is given by the Terminator property. Note
that for UDP objects, DatagramTerminateMode must be off.

For all other interface objects except VISA-RSIB, the terminator is
given by the EOSCharCode property.

• The time specified by the Timeout property passes.

• The specified number of bytes is read.

• The input buffer is filled.

• A datagram has been received (UDP objects only if
DatagramTerminateMode is on)

• The EOI line is asserted (GPIB and VXI instruments only).

For serial port, TCPIP, UDP, and VISA-serial objects, readasync can be
slow because it checks for the terminator. To increase speed, you might
want to configure ReadAsyncMode to continuous and continuously
return data to the input buffer as soon as it is available from the
instrument.

Examples This example creates the serial port object s, connects s to a Tektronix
TDS 210 oscilloscope, configures s to read data asynchronously only
if readasync is issued, and configures the instrument to return the
peak-to-peak value of the signal on channel 1.

s = serial('COM1');
fopen(s)
s.ReadAsyncMode = 'manual';
fprintf(s,'Measurement:Meas1:Source CH1')

18-137

readasync

fprintf(s,'Measurement:Meas1:Type Pk2Pk')
fprintf(s,'Measurement:Meas1:Value?')

Initially, there is no data in the input buffer.

s.BytesAvailable
ans =

0

Begin reading data asynchronously from the instrument using
readasync. When the read operation is complete, return the data to the
MATLAB workspace using fscanf.

readasync(s)
s.BytesAvailable
ans =

15
out = fscanf(s)
out =
2.0399999619E0
fclose(s)

See Also Functions

fopen, stopasync

Properties

BytesAvailable, BytesAvailableFcn, ReadAsyncMode, Status,
TransferStatus

18-138

record

Purpose Record data and event information to file

Syntax record(obj)
record(obj,'switch')

Arguments obj An instrument object.

'switch' Switch recording capabilities on or off.

Description record(obj) toggles the recording state for obj.

record(obj,'switch') initiates or terminates recording for obj.
switch can be on or off. If switch is on, recording is initiated. If
switch is off, recording is terminated.

Remarks Before you can record information to disk, obj must be connected to the
instrument with the fopen function. A connected instrument object has
a Status property value of open. An error is returned if you attempt
to record information while obj is not connected to the instrument.
Each instrument object must record information to a separate file.
Recording is automatically terminated when obj is disconnected from
the instrument with fclose.

The RecordName and RecordMode properties are read-only while obj is
recording, and must be configured before using record.

For a detailed description of the record file format and the properties
associated with recording data and event information to a file, refer to
“Debugging: Recording Information to Disk” on page 12-6.

Examples This example creates the GPIB object g, connects g to the instrument,
and configures g to record detailed information to the disk file
MyGPIBFile.txt.

g = gpib('ni',0,1);
fopen(g)
g.RecordDetail = 'verbose';

18-139

record

g.RecordName = 'MyGPIBFile.txt';

Initiate recording, write the *IDN? command to the instrument, and
read back the identification information.

record(g,'on')
fprintf(g,'*IDN?')
out = fscanf(g);

Terminate recording and disconnect g from the instrument.

record(g,'off')
fclose(g)

See Also Functions

fclose, fopen, propinfo

Properties

RecordMode, RecordName, RecordStatus, Status

18-140

remove

Purpose Remove entry from IVI configuration store object

Syntax remove(obj, 'type', 'name')
remove(obj, struct)

Arguments obj IVI configuration store object

'type' Type of entry being removed; type can be
DriverSession, HardwareAsset, or LogicalName

'name' Name of the DriverSession, HardwareAsset, or
LogicalName to be removed

struct Structure defining entries to be removed

Description remove(obj, 'type', 'name') removes an entry of type, type, with
name, name, from the IVI configuration store object, obj. type can be
HardwareAsset, DriverSession, or LogicalName. If an entry of type,
type, with name, name, does not exist, an error will occur.

remove(obj, struct) removes an entry using the fields in struct.
If an entry with the type and name field in struct does not exist, an
error will occur.

The modified configuration store object, obj, can be saved to the
configuration store data file with the commit function.

If you attempt to remove an entry that is actively referenced by another
entry, an error will occur. For example, you cannot remove a hardware
asset that is currently referenced by a driver session.

Examples c = iviconfigurationstore;
remove(c, 'HardwareAsset', 'gpib1');

See Also Functions

iviconfigurationstore, iviconfigurationstore/add,
iviconfigurationstore/commit, iviconfigurationstore/update

18-141

resolvehost

Purpose Network name or network address

Syntax name = resolvehost('host')
[name,address] = resolvehost('host')
out = resolvehost('host','returntype')

Arguments 'host' The network name or network address of host.

'returntype' Return either the name or address of host

name Network name of host

address Network address of host

Description name = resolvehost('host') returns the name of the specified
host. You can specify host as either a network name or a network
address. For example, www.mathworks.com is a network name and
144.212.100.10 is a network address.

[name,address] = resolvehost('host') returns the name and
address of the specified host.

out = resolvehost('host','returntype') returns the host name
if returntype is name and returns the host address if returntype
is address.

Examples The following commands show how you can return the host name and
address.

[name,address] = resolvehost('144.212.100.10')
name = resolvehost('144.212.100.10','name')
address = resolvehost('www.mathworks.com','address')

See Also Functions

tcpip, udp

18-142

save

Purpose Save instrument objects and variables to MAT-file

Syntax save filename
save filename obj1 obj2 ...

Arguments filename The MAT-file name.

obj1 obj2 ... Instrument objects or arrays of instrument objects.

Description save filename saves all MATLAB variables to the MAT-file filename.
If an extension is not specified for filename, then a .mat extension is
used.

save filename obj1 obj2 ... saves the instrument objects obj1
obj2 ... to the MAT-file filename.

Remarks You can use save in the functional form as well as the command form
shown above. When using the functional form, you must specify the
filename and instrument objects as strings. For example, to save the
serial port object s to the file MySerial.mat,

s = serial('COM1');
save('MySerial','s')

Any data that is associated with the instrument object is not
automatically stored in the MAT-file. For example, suppose there is
data in the input buffer for obj. To save that data to a MAT-file, you
must bring the data into the MATLAB workspace using one of the
synchronous read functions, and then save the data to the MAT-file
using a separate variable name. You can also save data to a text file
with the record function.

You return objects and variables to the MATLAB workspace with the
load command. Values for read-only properties are restored to their
default values upon loading. For example, the Status property is
restored to closed. To determine if a property is read-only, examine its
reference pages or use the propinfo function.

18-143

save

Examples This example illustrates how to use the command form and the
functional form of save.

s = serial('COM1');
set(s,'BaudRate',2400,'StopBits',1)
save MySerial1 s
set(s,'BytesAvailableFcn',@mycallback)
save('MySerial2','s')

See Also Functions

instrhelp, load, propinfo, record

Properties

Status

18-144

scanstr

Purpose Read data from instrument, format as text, and parse

Syntax A = scanstr(obj)
A = scanstr(obj,'delimiter')
A = scanstr(obj,'delimiter','format')
[A,count] = scanstr(...)
[A,count,msg] = scanstr(...)

Arguments obj An interface object.

'delimiter' One or more delimiters used to parse the data.

'format' C language conversion specification.

A Data read from the instrument and formatted as text.

count The number of values read.

msg A message indicating if the read operation was
unsuccessful.

Description A = scanstr(obj) reads formatted data from the instrument connected
to obj, parses the data using both a comma and a semicolon delimiter,
and returns the data to the cell array A. Each element of the cell array
is determined to be either a double or a string.

A = scanstr(obj,'delimiter') parses the data into separate
variables based on the specified delimiter. delimiter can be a single
character or a string array. If delimiter is a string array, then each
character in the array is used as a delimiter.

A = scanstr(obj,'delimiter','format') converts the data according
to the specified format. A can be a matrix or a cell array depending on
format. See the textread M-file help for complete details. format is a
string containing C language conversion specifications.

Conversion specifications involve the % character and the conversion
characters d, i, o, u, x, X, f, e, E, g, G, c, and s. See the sscanf file I/O
format specifications or a C manual for complete details.

18-145

scanstr

If format is not specified, then the best format (either a double or a
string) is chosen.

[A,count] = scanstr(...) returns the number of values read to
count.

[A,count,msg] = scanstr(...) returns a warning message to msg if
the read operation did not complete successfully.

Remarks Before you can read data from the instrument, it must be connected to
obj with the fopen function. A connected interface object has a Status
property value of open. An error is returned if you attempt to perform a
read operation while obj is not connected to the instrument.

If msg is not included as an output argument and the read operation was
not successful, then a warning message is returned to the command line.

The ValuesReceived property value is increased by the number of
values read — including the terminator — each time scanstr is issued.

Examples Create the GPIB object g associated with a National Instruments board
with index 0 and primary address 2, and connect g to a Tektronix TDS
210 oscilloscope.

g = gpib('ni',0,2);
fopen(g)

Return identification information to separate elements of a cell array
using the default delimiters.

fprintf(g,'*IDN?');
idn = scanstr(g)
idn =

'TEKTRONIX'
'TDS 210'
[0]
'CF:91.1CT FV:v1.16 TDS2CM:CMV:v1.04'

18-146

scanstr

See Also Functions

fopen, fscanf, instrhelp, sscanf, textread

Properties

EOSCharCode, EOSMode, Status, Terminator, ValuesReceived

18-147

selftest

Purpose Run instrument self-test

Syntax out = selftest(obj)

Arguments obj A device object.

out The result of the self-test.

Description out = selftest(obj) runs the self-test for the instrument associated
with the device object specified by obj. The result of the self-test
is returned to out. Note that the test result will vary based on the
instrument.

18-148

serial

Purpose Create serial port object

Syntax obj = serial('port')
obj = serial('port','PropertyName',PropertyValue,...)

Arguments 'port' The serial port name.

'PropertyName' A serial port property name.

PropertyValue A property value supported by PropertyName.

obj The serial port object.

Description obj = serial('port') creates a serial port object associated with the
serial port specified by port. If port does not exist, or if it is in use,
you will not be able to connect the serial port object to the instrument
with the fopen function.

obj = serial('port','PropertyName',PropertyValue,...) creates
a serial port object with the specified property names and property
values. If an invalid property name or property value is specified, an
error is returned and the serial port object is not created.

Remarks At any time, you can use the instrhelp function to view a complete
listing of properties and functions associated with serial port objects.

instrhelp serial

When you create a serial port object, these property values are
automatically configured:

• Type is given by serial.

• Name is given by concatenating Serial with the port specified in the
serial function.

• Port is given by the port specified in the serial function.

18-149

serial

You can specify the property names and property values using any
format supported by the set function. For example, you can use
property name/property value cell array pairs. Additionally, you can
specify property names without regard to case, and you can make use
of property name completion. For example, the following commands
are all valid.

s = serial('COM1','BaudRate',4800);
s = serial('COM1','baudrate',4800);
s = serial('COM1','BAUD',4800);

Before you can communicate with the instrument, it must be connected
to obj with the fopen function. A connected serial port object has a
Status property value of open. An error is returned if you attempt a
read or write operation while obj is not connected to the instrument.
You can connect only one serial port object to a given serial port.

Examples This example creates the serial port object s1 associated with the serial
port COM1.

s1 = serial('COM1');

The Type, Name, and Port properties are automatically configured.

get(s1,{'Type','Name','Port'})
ans =

'serial' 'Serial-COM1' 'COM1'

To specify properties during object creation,

s2 = serial('COM2','BaudRate',1200,'DataBits',7);

See Also Functions

fclose, fopen, propinfo

Properties

Name, Port, Status, Type

18-150

serialbreak

Purpose Send break to instrument

Syntax serialbreak(obj)
serialbreak(obj,time)

Arguments obj A serial port object.

time The duration of the break, in milliseconds.

Description serialbreak(obj) sends a break of 10 milliseconds to the instrument
connected to obj.

serialbreak(obj,time) sends a break to the instrument with a
duration, in milliseconds, specified by time. Note that the duration of
the break might be inaccurate under some operating systems.

Remarks For some instruments, the break signal provides a way to clear the
hardware buffer.

Before you can send a break to the instrument, it must be connected
to obj with the fopen function. A connected serial port object has a
Status property value of open. An error is returned if you attempt to
send a break while obj is not connected to the instrument.

serialbreak is a synchronous function, and blocks the command line
until execution is complete.

If you issue serialbreak while data is being asynchronously written,
an error is returned. In this case, you must call the stopasync function
or wait for the write operation to complete.

See Also Functions

fopen, stopasync

Properties

Status

18-151

set

Purpose Configure or display instrument object properties

Syntax set(obj)
props = set(obj)
set(obj,'PropertyName')
props = set(obj,'PropertyName')
set(obj,'PropertyName',PropertyValue,...)
set(obj,PN,PV)
set(obj,S)

Arguments obj An instrument object or an array of instrument
objects.

'PropertyName' A property name for obj.

PropertyValue A property value supported by PropertyName.

PN A cell array of property names.

PV A cell array of property values.

S A structure with property names and property
values.

props A structure array whose field names are the
property names for obj, or cell array of possible
values.

Description set(obj) displays all configurable property values for obj. If a property
has a finite list of possible string values, then these values are also
displayed.

props = set(obj) returns all configurable properties and their
possible values for obj to props. props is a structure whose field names
are the property names of obj, and whose values are cell arrays of
possible property values. If the property does not have a finite set of
possible values, then the cell array is empty.

18-152

set

set(obj,'PropertyName') displays the valid values for PropertyName if
it possesses a finite list of string values.

props = set(obj,'PropertyName') returns the valid values for
PropertyName to props. props is a cell array of possible string values
or an empty cell array if PropertyName does not have a finite list of
possible values.

set(obj,'PropertyName',PropertyValue,...) configures multiple
property values with a single command.

set(obj,PN,PV) configures the properties specified in the cell array of
strings PN to the corresponding values in the cell array PV. PN must be a
vector. PV can be m-by-n where m is equal to the number of instrument
objects in obj and n is equal to the length of PN.

set(obj,S) configures the named properties to the specified values for
obj. S is a structure whose field names are instrument object properties,
and whose field values are the values of the corresponding properties.

Remarks You can use any combination of property name/property value pairs,
structure arrays, and cell arrays in one call to set. Additionally, you can
specify a property name without regard to case, and you can make use
of property name completion. For example, if g is a GPIB object, then
the following commands are all valid.

set(g,'EOSMode')
set(g,'eosmode')
set(g,'EOSM')

Examples This example illustrates some of the ways you can use set to configure
or return property values for the GPIB object g.

g = gpib('ni',0,1);
set(g,'EOSMode','read','OutputBufferSize',50000)
set(g,{'EOSCharCode','RecordName'},{13,'sydney.txt'})
set(g,'EOIMode')
[{on} | off]

18-153

set

See Also Functions

get, instrhelp, propinfo

18-154

size

Purpose Size of instrument object array

Syntax d = size(obj)
[m,n] = size(obj)
[m1,m2,m3,...,mn] = size(obj)
m = size(obj,dim)

Arguments obj An instrument object or an array of instrument
objects.

dim The dimension of obj.

d The number of rows and columns in obj.

m The number of rows in obj, or the length of the
dimension specified by dim.

n The number of columns in obj.

m1,m2,...,mn The length of the first N dimensions of obj.

Description d = size(obj) returns the two-element row vector d containing the
number of rows and columns in obj.

[m,n] = size(obj) returns the number of rows and columns in
separate output variables.

[m1,m2,m3,...,mn] = size(obj) returns the length of the first n
dimensions of obj.

m = size(obj,dim) returns the length of the dimension specified by
the scalar dim. For example, size(obj,1) returns the number of rows.

See Also Functions

instrhelp, length

18-155

spoll

Purpose Perform serial poll

Syntax out = spoll(obj)
out = spoll(obj,val)

Arguments obj A GPIB object or an array of GPIB objects.

val A numeric array containing the indices of the objects in
obj, that must be ready for servicing before control is
returned to MATLAB.

out The GPIB objects ready for servicing.

Description out = spoll(obj) performs a serial poll on the instruments associated
with obj. out contains the GPIB objects that are ready for servicing. If
no objects are ready for servicing, then out is empty.

out = spoll(obj,val) performs a serial poll and waits until the
instruments specified by val are ready for servicing. An error is
returned if a value specified in val does not match an index value in obj.

Using this syntax, spoll blocks access to the MATLAB command line
until the objects specified by val are ready for servicing, or a timeout
occurs for each object specified by val. The timeout period is specified
by the Timeout property.

Remarks Serial polling is a method of obtaining specific information from GPIB
objects when they request service. When you perform a serial poll, out
contains the GPIB object that has asserted its service request (SRQ)
line.

If obj is an array of GPIB objects

• Each element of obj must have the same BoardIndex property value.

• Each element of obj is polled to determine if the instrument is ready
for servicing.

18-156

spoll

Examples If obj is a four-element array and val is set to [1 3], then spoll will
block access to the MATLAB command line until the instruments
connected to the first and third GPIB objects have both asserted their
SRQ line, or a timeout occurs.

See Also Functions

gpib, length

Properties

BoardIndex, Timeout

18-157

stopasync

Purpose Stop asynchronous read and write operations

Syntax stopasync(obj)

Arguments obj An interface object or an array of interface objects.

Description stopasync(obj) stops any asynchronous read or write operation that is
in progress for obj.

Remarks You can write data asynchronously using the fprintf or fwrite
functions. You can read data asynchronously using the readasync
function, or by configuring the ReadAsyncMode property to continuous
(serial port, TCPIP, UDP, and VISA-serial objects). In-progress
asynchronous operations are indicated by the TransferStatus property.

If obj is an array of interface objects and one of the objects cannot be
stopped, the remaining objects in the array are stopped and a warning
is returned. After an object stops,

• Its TransferStatus property is configured to idle.

• Its ReadAsyncMode property is configured to manual (serial port,
TCPIP, UDP, and VISA-serial objects).

• The data in its output buffer is flushed.

Data in the input buffer is not flushed. You can return this data to the
MATLAB workspace using any of the synchronous read functions. If
you execute the readasync function, or configure the ReadAsyncMode
property to continuous, then the new data is appended to the existing
data in the input buffer.

See Also Functions

fprintf, fwrite, readasync

18-158

stopasync

Properties

ReadAsyncMode, TransferStatus

18-159

tcpip

Purpose Create TCPIP object

Syntax obj = tcpip('rhost')
obj = tcpip('rhost',rport)
obj = tcpip(...,'PropertyName',PropertyValue,...)

Arguments 'rhost' The remote host.

rport The remote port.

'PropertyName' A TCPIP property name.

PropertyValue A property value supported by PropertyName.

obj The TCPIP object.

Description obj = tcpip('rhost') creates a TCPIP object, obj, associated with
remote host rhost and the default remote port value of 80.

obj = tcpip('rhost',rport) creates a TCPIP object with remote
port value rport.

obj = tcpip(...,'PropertyName',PropertyValue,...) creates a
TCPIP object with the specified property name/property value pairs.
If an invalid property name or property value is specified, the object
is not created.

Remarks At any time, you can use the instrhelp function to view a complete
listing of properties and functions associated with TCPIP objects.

instrhelp tcpip

When you create a TCPIP object, these property values are
automatically configured:

• Type is given by tcpip.

• Name is given by concatenating TCPIP with the remote host name
specified in the tcpip function.

18-160

tcpip

• RemoteHost and RemotePort are given by the values specified in
the tcpip function.

You can specify the property names and property values using any
format supported by the set function. For example, you can use
property name/property value cell array pairs. Additionally, you can
specify property names without regard to case, and you can make use
of property name completion. For example, the following commands
are all valid.

t = tcpip('144.212.113.252','InputBufferSize',1024);
t = tcpip('144.212.113.252','inputbuffersize',1024);
t = tcpip('144.212.113.252','INPUT',1024);

When the TCPIP object is constructed, the Status property value
is closed. Once the object is connected to the host with the fopen
function, the Status property is configured to open.

The default local host in multihome hosts is the system’s default. The
LocalPort property defaults to a value of [] and it causes any free local
port to be used. LocalPort is updated when fopen is issued.

Examples Start a TCP/IP echo server and create a TCPIP object.

echotcpip('on',4012)
t = tcpip('localhost',4012);

Connect the TCPIP object to the host.

fopen(t)

Write to the host and read from the host.

fwrite(t,65:74)
A = fread(t, 10);

18-161

tcpip

Disconnect the TCPIP object from the host and stop the echo server.

fclose(t)
echotcpip('off')

See Also Functions

fopen, sendmail, udp, urlread, urlwrite

Properties

LocalHost, LocalPort, LocalPortMode, Name, RemoteHost,
RemotePort, Status, Type

18-162

tmtool

Purpose Open Test & Measurement Tool

Syntax tmtool

Description tmtool starts the Test & Measurement Tool. The Test & Measurement
Tool displays the resources (hardware, drivers, interfaces, etc.)
accessible to the toolboxes that support the tool, and enables you to
configure and communicate with those resources.

You use the Test & Measurement Tool to manage your instrument
control session. This tool enables you to

• Search for available hardware and drivers

• Create instrument objects

• Connect to an instrument

• Configure instrument settings

• Write data to an instrument

• Read data from an instrument

• Save a log of your session as an M-file

For a full description of the Test & Measurement Tool with examples,
see Chapter 13, “The Test & Measurement Tool”.

See Also instrcreate, instrcomm, midedit, midtest

18-163

trigger

Purpose Send trigger message to instrument

Syntax trigger(obj)

Arguments obj A GPIB, VISA-GPIB, or VISA-VXI object.

Description trigger(obj) sends a trigger message to the instrument connected
to obj.

Remarks Before you can use trigger, obj must be connected to the instrument
with the fopen function. A connected interface object has a Status
property value of open. An error is returned if you attempt to use
trigger while obj is not connected to the instrument.

For GPIB and VISA-GPIB objects, the Group Execute Trigger (GET)
message is sent to the instrument.

For VISA-VXI objects, if the TriggerType property is configured to
software, the Word Serial Trigger command is sent to the instrument.
If TriggerType is configured to hardware, a hardware trigger is sent on
the line specified by the TriggerLine property.

See Also Functions

fopen

Properties

Status, TriggerLine, TriggerType

18-164

udp

Purpose Create UDP object

Syntax obj = udp('')
obj = udp('rhost')
obj = udp('rhost',rport)
obj = udp(...,'PropertyName',PropertyValue,...)

Arguments 'rhost' The remote host.

rport The remote port.

'PropertyName' A UDP property name.

PropertyValue A property value supported by PropertyName.

obj The UDP object.

Description obj = udp('') creates a UDP object, obj, not associated with a remote
host. obj = udp('rhost') creates a UDP object associated with
remote host rhost.

obj = udp('rhost',rport) creates a UDP object with remote port
value, rport. The default remote port is 9090.

obj = udp(...,'PropertyName',PropertyValue,...) creates a UDP
object with the specified property name/property value pairs. If an
invalid property name or property value is specified, the object is not
created.

Remarks At any time, you can use the instrhelp function to view a complete
listing of properties and functions associated with UDP objects.

instrhelp udp

When you create a UDP object, these properties are automatically
configured:

• Type is given by udp.

18-165

udp

• Name is given by concatenating UDP with the remote host name
specified in the udp function.

• RemoteHost and RemotePort are given by the values specified in
the udp function.

You can specify the property names and property values using any
format supported by the set function. For example, you can use
property name/property value cell array pairs. Additionally, you can
specify property names without regard to case, and you can make use
of property name completion. For example, the following commands
are all valid.

u = udp('144.212.113.252','InputBufferSize',1024);
u = udp('144.212.113.252','inputbuffersize',1024);
u = udp('144.212.113.252','INPUT',1024);

The UDP object must be bound to the local socket with the fopen
function. The default remote port is 9090. The default local host in
multihome hosts is the system’s default. The LocalPort property
defaults to a value of [] and it causes any free local port to be used.
LocalPort is updated when fopen is issued. When the UDP object is
constructed, the Status property value is closed. Once the object is
bound to the local socket with fopen, Status is configured to open.

The maximum packet size for reading is 8192 bytes. The input buffer
can hold as many packets as defined by the InputBufferSize property
value. You can write any data size to the output buffer. The data will be
sent in packets of at most 4096 bytes.

Examples Start the echo server and create a UDP object.

echoudp('on',4012)
u = udp('127.0.0.1',4012);

Connect the UDP object to the host.

fopen(u)

18-166

udp

Write to the host and read from the host.

fwrite(u,65:74)
A = fread(u,10);

Stop the echo server and disconnect the UDP object from the host.

echoudp('off')
fclose(u)

See Also Functions

fopen

Properties

LocalHost, LocalPort, LocalPortMode, Name, RemoteHost,
RemotePort, Status, Type

18-167

update

Purpose Update entry of IVI configuration store object

Syntax update(obj, 'type', 'name', 'P1', V1, ...)
update(obj, struct)

Arguments obj IVI configuration store object.

'type' Type of entry; type can be HardwareAsset,
DriverSession, or LogicalName.

'name' Name of the DriverSession, HardwareAsset, or
LogicalName to be updated.

'P1' First parameter for updated entry; other
parameter-value pairs may follow.

V1 Value for first parameter.

struct Structure defining entry fields to be updated.

Description update(obj, 'type', 'name', 'P1', V1, ...) updates an entry of
type, type, with name, name, in IVI configuration store object, obj,
using the specified parameter-value pairs. type can be HardwareAsset,
DriverSession, or LogicalName.

If an entry of type, type with name, name does not exist, an error will
occur.

Valid parameters for a DriverSession are listed below. The default
value for on/off parameters is off.

Parameter Value Description

Name string A unique name for the driver
session.

SoftwareModule string The name of a software module
entry in the configuration store.

18-168

update

Parameter Value Description

HardwareAsset string The name of a hardware asset
entry in the configuration store.

Description Any string Description of driver session

VirtualNames structure A struct array containing virtual
name mappings

Cache on/off Enable caching if the driver
supports it.

DriverSetup Any string This value is software module
dependent

InterchangeCheck on/off Enable driver interchangeability
checking, if supported

QueryInstrStatus on/off Enable instrument status
querying by the driver

RangeCheck on/off Enable extended range checking
by the driver, if supported

RecordCoercions on/off Enable recording of coercions by
the driver, if supported

Simulate on/off Enable simulation by the driver

Valid fields for HardwareAsset are

Parameter Value Description

Name string A unique name for the
hardware asset

Description Any
string

Description of hardware asset

IOResourceDescriptor string The I/O address of the
hardware asset

18-169

update

Valid fields for LogicalName are

Parameter Value Description

Name string A unique name for the logical
name

Description Any string Description of hardware asset

Session string The name of a driver session
entry in the configuration store

update(obj, struct) updates the entry using the fields in struct. If
an entry with the type and name field in struct does not exist, an error
will occur. Note that the name field cannot be updated using this syntax.

Examples Update the Description parameter of the driver session named
ScopeSession in the IVI configuration store object named c.

c = iviconfigurationstore;
update(c, 'DriverSession', 'ScopeSession', 'Description', ...
'A session.');

See Also Functions

iviconfigurationstore, iviconfigurationstore/add,
iviconfigurationstore/commit, iviconfigurationstore/remove

18-170

visa

Purpose Create VISA object

Syntax obj = visa('vendor','rsrcname')
obj = visa('vendor','rsrcname','PropertyName',PropertyValue,

...)

Arguments 'vendor' A supported VISA vendor.

'rsrcname' The resource name of the VISA instrument.

'PropertyName' A VISA property name.

PropertyValue A property value supported by PropertyName.

obj The VISA object.

Description obj = visa('vendor','rsrcname') creates the VISA object obj with a
resource name given by rsrcname for the vendor specified by vendor.
If an invalid vendor or resource name is specified, an error is returned
and the VISA object is not created. The supported values for vendor
are given below.

Vendor Description

agilent Agilent Technologies VISA

ni National Instruments VISA

tek Tektronix VISA

The format for rsrcname is given below for the supported VISA
interfaces. The values indicated by brackets are optional. You can use
the instrument’s VISA Alias for rsrcname.

Interface Resource Name

GPIB GPIB[board]::primary_address[::secondary_address]::INSTR

GPIB-VXI GPIB-VXI[chassis]::VXI_logical_address::INSTR

18-171

visa

Interface Resource Name

RSIB RSIB::remote_host::INSTR (provided by NI VISA only)

Serial ASRL[port_number]::INSTR

TCPIP TCPIP[board]::remote_host[::lan_device_name]::INSTR

USB USB[board]::manid::model_code::serial_No[::interface_No]::INSTR

VXI VXI[chassis]::VXI_logical_address::INSTR

The rsrcname parameters are described below.

Parameter Description

board Board index (optional — defaults to 0)

chassis VXI chassis index (optional — defaults to 0)

interface_No USB interface

lan_device_name Local Area Network (LAN) device name
(optional — defaults to inst0)

manid Manufacturer ID of the USB instrument

model_code Model code for the USB instrument

port_number Serial port number (optional — defaults to 1)

primary_address Primary address of the GPIB instrument

remote_host Host name or IP address of the instrument

secondary_address Secondary address of the GPIB instrument
(optional — defaults to 0)

serial_No Index of the instrument on the USB hub

VXI_logical_address Logical address of the VXI instrument

obj =
visa('vendor','rsrcname','PropertyName',PropertyValue,...)
creates the VISA object with the specified property names and property

18-172

visa

values. If an invalid property name or property value is specified, an
error is returned and the VISA object is not created.

Remarks At any time, you can use the instrhelp function to view a complete
listing of properties and functions associated with VISA objects.

instrhelp visa

You can specify the property names and property values using any
format supported by the set function. For example, you can use
property name/property value cell array pairs. Additionally, you can
specify property names without regard to case, and you can make use
of property name completion. For example, the following commands
are all valid.

v = visa('ni','GPIB0::1::INSTR','SecondaryAddress', 96);
v = visa('ni','GPIB0::1::INSTR','secondaryaddress', 96);
v = visa('ni','GPIB0::1::INSTR','SECOND', 96);

Before you can communicate with the instrument, it must be connected
to obj with the fopen function. A connected VISA object has a Status
property value of open. An error is returned if you attempt a read or
write operation while obj is not connected to the instrument. You
cannot connect multiple VISA objects to the same instrument.

Creating a VISA-GPIB Object

When you create a VISA-GPIB object, these properties are automatically
configured:

• Type is given by visa-gpib.

• Name is given by concatenating VISA-GPIB with the board index, the
primary address, and the secondary address.

• BoardIndex, PrimaryAddress, SecondaryAddress, and RsrcName are
given by the values specified during object creation.

18-173

visa

Creating a VISA-GPIB-VXI Object

When you create a VISA-GPIB-VXI object, these properties are
automatically configured:

• Type is given by visa-gpib-vxi.

• Name is given by concatenating VISA-GPIB-VXI with the chassis index
and the logical address specified in the visa function.

• ChassisIndex, LogicalAddress, and RsrcName are given by the
values specified during object creation.

• BoardIndex, PrimaryAddress, and SecondaryAddress are given by
the visa driver after the object is connected to the instrument with
fopen.

Creating a VISA-RSIB Object

When you create a VISA-RSIB object, these properties are automatically
configured:

• Type is given by visa-rsib.

• Name is given by concatenating VISA-RSIB with the remote host
specified in the visa function.

• RemoteHost and RsrcName are given by the values specified during
object creation.

Creating a VISA-Serial Object

When you create a VISA-serial object, these properties are automatically
configured:

• Type is given by visa-serial.

• Name is given by concatenating VISA-Serial with the port specified
in the visa function.

• Port and RsrcName are given by the values specified during object
creation.

18-174

visa

Creating a VISA-TCPIP Object

When you create a VISA-TCPIP object, these properties are
automatically configured:

• Type is given by visa-tcpip.

• Name is given by concatenating VISA-TCPIP with the board index,
remote host, and LAN device name specified in the visa function.

• BoardIndex, RemoteHost, LANNAme, and RsrcName are given by the
values specified during object creation.

Creating a VISA-USB Object

When you create a VISA-USB object, these properties are automatically
configured:

• Type is given by visa-usb.

• Name is given by concatenating VISA-USB with the board index,
manufacturer ID, model code, serial number, and interface number
specified in the visa function.

• BoardIndex, ManufacturerID, ModelCode, SerialNumber,
InterfaceIndex, and RsrcName are given by the values specified
during object creation.

Creating a VISA-VXI Object

When you create a VISA-VXI object, these properties are automatically
configured:

• Type is given by visa-vxi.

• Name is given by concatenating VISA-VXI with the chassis index and
the logical address specified in the visa function.

• ChassisIndex, LogicalAddress, and RsrcName are given by the
values specified during object creation.

18-175

visa

Examples Create a VISA-serial object connected to serial port COM1 using
National Instruments VISA interface.

vs = visa('ni','ASRL1::INSTR');

Create a VISA-GPIB object connected to board 0 with primary address
1 and secondary address 30 using Agilent Technologies VISA interface.

vg = visa('agilent','GPIB0::1::30::INSTR');

Create a VISA-VXI object connected to a VXI instrument located at
logical address 8 in the first VXI chassis.

vv = visa('agilent','VXI0::8::INSTR');

Create a VISA-GPIB-VXI object connected to a GPIB-VXI instrument
located at logical address 72 in the second VXI chassis.

vgv = visa('agilent','GPIB-VXI1::72::INSTR');

Create a VISA-RSIB object connected to an instrument configured with
IP address 192.168.1.33.

vr = visa('ni', 'RSIB::192.168.1.33::INSTR')

Create a VISA-TCPIP object connected to an instrument configured
with IP address 216.148.60.170.

vt = visa('tek', 'TCPIP::216.148.60.170::INSTR')

Create a VISA-USB object connected to a USB instrument with
manufacturer ID 0x1234, model code 125, and serial number A22-5.

vu = visa('agilent', 'USB::0x1234::125::A22-5::INSTR')

See Also Functions

fclose, fopen, instrhelp, instrhwinfo

18-176

visa

Properties

BoardIndex, ChassisIndex, InterfaceIndex, LANName,
LogicalAddress, ManufacturerID, ModelCode, Name, Port,
PrimaryAddress, RsrcName, SecondaryAddress, SerialNumber,
Status, Type

18-177

19

Properties — By Category

Interface Object Base Properties
(p. 19-2)

Apply to all interface objects

Interface-Specific Properties (p. 19-5) Apply to instrument objects of
particular interface type

Device Object Base Properties
(p. 19-13)

Apply to all device objects

IVI Configuration Store Object
Properties (p. 19-14)

Apply to IVI configuration store
objects

19 Properties — By Category

Interface Object Base Properties

Writing Data (p. 19-2) Output buffer parameters, timeout,
status

Reading Data (p. 19-2) Input buffer parameters, timeout,
status

Recording Data (p. 19-3) Record file parameters, status

Callbacks (p. 19-3) M-file callback functions to execute
when specific events occur

General Purpose (p. 19-4) Object description, byte order, status

Writing Data

BytesToOutput Number of bytes currently in output
buffer

OutputBufferSize Specify size of output buffer in bytes

Timeout Specify waiting time to complete
read or write operation

TransferStatus Status of whether asynchronous
read or write operation is in progress

ValuesSent Total number of values written to
instrument

Reading Data

BytesAvailable Number of bytes available in input
buffer

InputBufferSize Specify size of input buffer in bytes

Timeout Specify waiting time to complete
read or write operation

19-2

Interface Object Base Properties

TransferStatus Status of whether asynchronous
read or write operation is in progress

ValuesReceived Total number of values read from
instrument

Recording Data

RecordDetail Specify amount of information saved
to record file

RecordMode Specify whether data and event
information are saved to one or to
multiple record files

RecordName Specify name of record file

RecordStatus Status of whether data and event
information are saved to record file

Callbacks

BytesAvailableFcn Specify M-file callback function to
execute when specified number of
bytes are available in input buffer,
or terminator is read

BytesAvailableFcnCount Specify number of bytes that must be
available in input buffer to generate
bytes-available event

BytesAvailableFcnMode Specify whether bytes-available
event is generated after specified
number of bytes are available in
input buffer, or after terminator is
read

ErrorFcn Specify M-file callback function to
execute when error event occurs

19-3

19 Properties — By Category

OutputEmptyFcn Specify M-file callback function to
execute when output buffer is empty

TimerFcn Specify M-file callback function to
execute when predefined period
passes

TimerPeriod Specify period between timer events

General Purpose

ByteOrder Specify byte order of instrument

Name Specify descriptive name for
instrument object

ObjectVisibility Control access to instrument object

Status Status of whether object is connected
to instrument

Tag Specify label to associate with
instrument object

Type Instrument object type

UserData Specify data to associate with
instrument object

19-4

Interface-Specific Properties

Interface-Specific Properties

GPIB (p. 19-5) Communication address, bus
configuration, status

Serial Port (p. 19-6) Communication settings, data
format, signals and pins

TCPIP (p. 19-7) Host and port information,
terminator character

UDP (p. 19-7) Host and port information,
datagrams, terminator character

VISA-GPIB (p. 19-8) Resource name, communication
address, bus configuration, status

VISA-GPIB-VXI (p. 19-8) Resource name, VXI memory,
chassis information, communication
address, bus configuration, status

VISA-RSIB (p. 19-9) Resource name, communication
address, communication settings

VISA-Serial (p. 19-10) Resource name, communication
settings, data format, signals and
pins

VISA-TCPIP (p. 19-10) Resource name, communication
address, communication settings

VISA-USB (p. 19-11) Resource name, communication
address, communication settings

VISA-VXI (p. 19-11) Resource name, VXI memory, chassis
information, status

GPIB

BoardIndex Specify index number of interface
board

BusManagementStatus State of GPIB bus management lines

19-5

19 Properties — By Category

CompareBits Specify number of bits that must
match EOS character to complete
read operation, or to assert EOI line

EOIMode Specify if EOI line is asserted at end
of write operation

EOSCharCode Specify EOS character

EOSMode Specify when EOS character is
written or read

HandshakeStatus State of GPIB handshake lines

PrimaryAddress Specify primary address of GPIB
instrument

SecondaryAddress Specify secondary address of GPIB
instrument

Serial Port

BaudRate Specify bit transmit rate

BreakInterruptFcn Specify M-file callback function to
execute when break-interrupt event
occurs

DataBits Specify number of data bits to
transmit

DataTerminalReady Specify state of DTR pin

FlowControl Specify data flow control method to
use

Parity Specify type of parity checking

PinStatus State of CD, CTS, DSR, and RI pins

PinStatusFcn Specify M-file callback function to
execute when CD, CTS, DSR, or RI
pin changes state

Port Specify platform-specific serial port
name

19-6

Interface-Specific Properties

ReadAsyncMode Specify whether asynchronous read
operation is continuous or manual

RequestToSend Specify state of RTS pin

StopBits Specify number of bits used to
indicate end of byte

Terminator Specify terminator character

TCPIP

LocalHost Specify local host

LocalPort Specify local host port for connection

LocalPortMode Specify local host port selection mode

ReadAsyncMode Specify whether asynchronous read
operation is continuous or manual

RemoteHost Specify remote host

RemotePort Specify remote host port for
connection

Terminator Specify terminator character

TransferDelay Specify use of TCP segment transfer
algorithm

UDP

DatagramAddress IP dotted decimal address of received
datagram sender

DatagramPort Port number of datagram sender

DatagramReceivedFcn Specify M-file callback function to
execute when datagram is received

DatagramTerminateMode Configure terminate read mode
when reading datagrams

LocalHost Specify local host

19-7

19 Properties — By Category

LocalPort Specify local host port for connection

LocalPortMode Specify local host port selection mode

ReadAsyncMode Specify whether asynchronous read
operation is continuous or manual

RemoteHost Specify remote host

RemotePort Specify remote host port for
connection

Terminator Specify terminator character

VISA-GPIB

BoardIndex Specify index number of interface
board

EOIMode Specify if EOI line is asserted at end
of write operation

EOSCharCode Specify EOS character

EOSMode Specify when EOS character is
written or read

PrimaryAddress Specify primary address of GPIB
instrument

RsrcName Resource name for VISA instrument

SecondaryAddress Specify secondary address of GPIB
instrument

VISA-GPIB-VXI

BoardIndex Specify index number of interface
board

ChassisIndex Specify index number of VXI chassis

EOIMode Specify if EOI line is asserted at end
of write operation

19-8

Interface-Specific Properties

EOSCharCode Specify EOS character

EOSMode Specify when EOS character is
written or read

LogicalAddress Specify logical address of VXI
instrument

MappedMemoryBase Base memory address of mapped
memory

MappedMemorySize Size of mapped memory for low-level
read and write operations

MemoryBase Base address of A24 or A32 space

MemoryIncrement Specify whether VXI register offset
increments after data is transferred

MemorySize Size of memory requested in A24 or
A32 address space

MemorySpace Address space used by instrument

PrimaryAddress Specify primary address of GPIB
instrument

RsrcName Resource name for VISA instrument

SecondaryAddress Specify secondary address of GPIB
instrument

Slot Slot location of VXI instrument

VISA-RSIB

EOIMode Specify if EOI line is asserted at end
of write operation

RemoteHost Specify remote host

19-9

19 Properties — By Category

VISA-Serial

BaudRate Specify bit transmit rate

DataBits Specify number of data bits to
transmit

DataTerminalReady Specify state of DTR pin

FlowControl Specify data flow control method to
use

Parity Specify type of parity checking

PinStatus State of CD, CTS, DSR, and RI pins

Port Specify platform-specific serial port
name

ReadAsyncMode Specify whether asynchronous read
operation is continuous or manual

RequestToSend Specify state of RTS pin

RsrcName Resource name for VISA instrument

StopBits Specify number of bits used to
indicate end of byte

Terminator Specify terminator character

VISA-TCPIP

BoardIndex Specify index number of interface
board

EOIMode Specify if EOI line is asserted at end
of write operation

EOSCharCode Specify EOS character

EOSMode Specify when EOS character is
written or read

LANName Specify LAN device name

RemoteHost Specify remote host

19-10

Interface-Specific Properties

VISA-USB

BoardIndex Specify index number of interface
board

EOIMode Specify if EOI line is asserted at end
of write operation

EOSCharCode Specify EOS character

EOSMode Specify when EOS character is
written or read

InterfaceIndex Specify USB interface number

ManufacturerID Specify manufacturer ID of USB
instrument

ModelCode Specify model code of USB
instrument

SerialNumber Specify index of USB instrument on
USB hub

VISA-VXI

ChassisIndex Specify index number of VXI chassis

EOIMode Specify if EOI line is asserted at end
of write operation

EOSCharCode Specify EOS character

EOSMode Specify when EOS character is
written or read

InterruptFcn Specify M-file callback function to
execute when interrupt event occurs

LogicalAddress Specify logical address of VXI
instrument

MappedMemoryBase Base memory address of mapped
memory

19-11

19 Properties — By Category

MappedMemorySize Size of mapped memory for low-level
read and write operations

MemoryBase Base address of A24 or A32 space

MemoryIncrement Specify whether VXI register offset
increments after data is transferred

MemorySize Size of memory requested in A24 or
A32 address space

MemorySpace Address space used by instrument

RsrcName Resource name for VISA instrument

Slot Slot location of VXI instrument

TriggerFcn Specify M-file callback function to
execute when trigger event occurs

TriggerLine Specify trigger line on VXI
instrument

TriggerType Specify trigger type

19-12

Device Object Base Properties

Device Object Base Properties
ConfirmationFcn Specify M-file callback function to

execute when confirmation event
occurs

DriverType Specify type of driver used to
communicate with instrument

InstrumentModel Instrument model that object
connects to

Interface Interface object that communicates
with instrument

LogicalName Specify description of interface used
to communicate with instrument

Name Specify descriptive name for
instrument object

ObjectVisibility Control access to instrument object

Status Status of whether object is connected
to instrument

Tag Specify label to associate with
instrument object

Timeout Specify waiting time to complete
read or write operation

Type Instrument object type

UserData Specify data to associate with
instrument object

19-13

19 Properties — By Category

IVI Configuration Store Object Properties
ActualLocation Configuration store file used by IVI

configuration store object

DriverSessions Array of driver sessions contained in
IVI configuration store

HardwareAssets Array of hardware assets contained
in IVI configuration store

LogicalNames Array of logical names contained in
IVI configuration store

MasterLocation Full pathname of master
configuration store file

Name (iviconfigurationstore) Name of IVI configuration server

ProcessLocation Configuration store file for process
to use if master configuration store
is not used

PublishedAPIs Array of published APIs in IVI
configuration store

Revision IVI configuration store version

ServerDescription IVI configuration store server
description

Sessions Array of driver sessions in IVI
configuration store

SoftwareModules Array of software modules in IVI
configuration store

SpecificationVersion IVI configuration server specification
version that this server revision
complies with

Vendor IVI configuration server vendor

19-14

20

Properties — Alphabetical
List

ActualLocation

Purpose Configuration store file used by IVI configuration store object

Description ActualLocation reflects the location of the IVI configuration store
actually being used. It is either the master configuration store, or the
ProcessLocation if an alternative to the master store was specified
when the IVI configuration store object was created.

Characteristics Usage IVI configuration store object

Read only Always

Data type String

Values The default value is the master configuration store.

See Also Functions

commit

Properties

MasterLocation, ProcessLocation

20-2

Alias

Purpose Alias of resource name for VISA instrument

Description Alias indicates the alias for the resource name for a VISA instrument.
When you create a VISA object, you can specify either the resource
name for a VISA instrument or an alias for the resource name. If an
alias is specified, Alias is automatically assigned the value specified
in the VISA function. If a resource name is specified and the resource
name has an alias, Alias is updated with the alias value. If the resource
name does not have an alias, Alias is an empty string.

Characteristics Usage VISA object

Read only Always

Data type String

Values The default value is an empty string.

Remarks You set the alias for a resource name using vender-supplied tools. You
do not set an alias in MATLAB. When you create the VISA object in
MATLAB, the Alias property of the object takes on the value of the
resource name alias. You do not directly set the value of this property.

National Instruments’ Measurement & Automation Explorer (MAX) is
one example of a graphical interface tool for setting a VISA alias in
NI-VISA. In this tool, select Tools > NI-VISA > Alias Editor to edit,
add, or clear aliases. When you have your aliases defined, you can use
them in MATLAB to access your resources.

See Also Functions

visa

Properties

RsrcName

20-3

BaudRate

Purpose Specify bit transmit rate

Description You configure BaudRate as bits per second. The transferred bits include
the start bit, the data bits, the parity bit (if used), and the stop bits.
However, only the data bits are stored.

The baud rate is the rate at which information is transferred in a
communication channel. In the serial port context, "9600 baud" means
that the serial port is capable of transferring a maximum of 9600 bits
per second. If the information unit is one baud (one bit), then the bit
rate and the baud rate are identical. If one baud is given as 10 bits, (for
example, eight data bits plus two framing bits), the bit rate is still 9600
but the baud rate is 9600/10, or 960. You always configure BaudRate as
bits per second. Therefore, in the above example, set BaudRate to 9600.

Note Both the computer and the instrument must be configured to the
same baud rate before you can successfully read or write data.

Standard baud rates include 110, 300, 600, 1200, 2400, 4800, 9600,
14400, 19200, 38400, 57600, 115200, 128000, and 256000 bits per
second. However, your serial port might support baud rates that differ
from these values.

Characteristics Usage Serial port, VISA-serial

Read only Never

Data type Double

Values The default value is 9600.

See Also Properties

DataBits, Parity, StopBits

20-4

BoardIndex

Purpose Specify index number of interface board

Description You configure BoardIndex to be the index number of the GPIB board,
USB board, or TCP/IP board associated with your instrument. When
you create a GPIB, VISA-GPIB, VISA-GPIB-VXI, VISA-TCPIP, or
VISA-USB object, BoardIndex is automatically assigned the value
specified in the gpib or visa function.

For GPIB objects, the Name property is automatically updated to
reflect the BoardIndex value. For VISA-GPIB, VISA-GPIB-VXI,
VISA-TCPIP, or VISA-USB objects, the Name and RsrcName properties
are automatically updated to reflect the BoardIndex value.

You can configure BoardIndex only when the object is disconnected
from the instrument. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Usage GPIB, VISA-GPIB, VISA-GPIB-VXI, VISA-TCPIP,
VISA-USB

Read only While open (GPIB, VISA-GPIB), always
(VISA-GPIB-VXI, VISA-TCPIP, VISA-USB)

Data type Double

Values The value is defined after the instrument object is created.

Examples Suppose you create a VISA-GPIB object associated with board 4,
primary address 1, and secondary address 8.

vg = visa('agilent','GPIB4::1::8::INSTR');

The BoardIndex, Name, and RsrcName properties reflect the GPIB board
index number.

get(vg,{'BoardIndex','Name','RsrcName'})
ans =

[4] 'VISA-GPIB4-1-8' 'GPIB4::1::8::INSTR'

20-5

BoardIndex

See Also Functions

fclose, gpib, visa

Properties

Name, RsrcName, Status

20-6

BreakInterruptFcn

Purpose Specify M-file callback function to execute when break-interrupt event
occurs

Description You configure BreakInterruptFcn to execute an M-file callback
function when a break-interrupt event occurs. A break-interrupt event
is generated by the serial port when the received data is in an off (space)
state longer than the transmission time for one byte.

Note A break-interrupt event can be generated at any time during the
instrument control session.

If the RecordStatus property value is on, and a break-interrupt event
occurs, the record file records this information:

• The event type as BreakInterrupt

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and
Executing Callback Functions” on page 4-32.

Characteristics Usage Serial port

Read only Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

record

20-7

BreakInterruptFcn

Properties

RecordStatus

20-8

BusManagementStatus

Purpose State of GPIB bus management lines

Description BusManagementStatus is a structure array that contains the fields
Attention, InterfaceClear, RemoteEnable, ServiceRequest, and
EndOrIdentify. These fields indicate the state of the Attention (ATN),
Interface Clear (IFC), Remote Enable (REN), Service Request (SRQ)
and End Or Identify (EOI) GPIB lines.

BusManagementStatus can be on or off for any of these fields. If
BusManagementStatus is on, the associated line is asserted. If
BusManagementStatus is off, the associated line is unasserted.

Characteristics Usage GPIB

Read only Always

Data type Structure

Values off The GPIB line is unasserted

on The GPIB line is asserted

The default value is instrument dependent.

Examples Create the GPIB object g associated with a National Instruments board,
and connect g to a Tektronix TDS 210 oscilloscope.

g = gpib('ni',0,0);
fopen(g)

Write the *STB? command, which queries the instrument’s status byte
register, and then return the state of the bus management lines with
the BusManagementStatus property.

fprintf(g,'*STB?')
g.BusManagementStatus

20-9

BusManagementStatus

ans =
Attention: 'off'

InterfaceClear: 'off'
RemoteEnable: 'on'

ServiceRequest: 'off'
EndOrIdentify: 'on'

REN is asserted because the system controller placed the scope in
the remote enable mode, while EOI is asserted to mark the end of
the command.

Now read the result of the *STB? command, and return the state of
the bus management lines.

out = fscanf(g)
out =
0
g.busmanagementstatus
ans =

Attention: 'on'
InterfaceClear: 'off'

RemoteEnable: 'on'
ServiceRequest: 'off'
EndOrIdentify: 'off'

ATN is asserted because a multiline response was read from the scope.

fclose(g)
delete(g)
clear g

20-10

ByteOrder

Purpose Specify byte order of instrument

Description You configure ByteOrder to be littleEndian or bigEndian. If
ByteOrder is littleEndian, then the instrument stores the first byte
in the first memory address. If ByteOrder is bigEndian, then the
instrument stores the last byte in the first memory address.

For example, suppose the hexadecimal value 4F52 is to be stored in
instrument memory. Because this value consists of two bytes, 4F and
52, two memory locations are used. Using big-endian format, 4F is
stored first in the lower storage address. Using little-endian format, 52
is stored first in the lower storage address.

Note You should configure ByteOrder to the appropriate value for your
instrument before performing a read or write operation. Refer to your
instrument documentation for information about the order in which
it stores bytes.

Characteristics Usage Any instrument object

Read only Never

Data type String

Values {littleEndian} The byte order of the instrument is little-endian.

bigEndian The byte order of the instrument is big-endian.

See Also Properties

Status

20-11

BytesAvailable

Purpose Number of bytes available in input buffer

Description BytesAvailable indicates the number of bytes currently available to be
read from the input buffer. The property value is continuously updated
as the input buffer is filled, and is set to 0 after the fopen function is
issued.

You can make use of BytesAvailable only when reading data
asynchronously. This is because when reading data synchronously,
control is returned to the MATLAB command line only after the input
buffer is empty. Therefore, the BytesAvailable value is always 0. To
learn how to read data asynchronously, refer to “Synchronous Versus
Asynchronous Read Operations” on page 3-22.

The BytesAvailable value can range from zero to the size of the input
buffer. Use the InputBufferSize property to specify the size of the
input buffer. Use the ValuesReceived property to return the total
number of values read.

Characteristics Usage Any instrument object

Read only Always

Data type Double

Values The value can range from zero to the size of the input buffer. The
default value is 0.

See Also Functions

fopen

Properties

InputBufferSize, TransferStatus, ValuesReceived

20-12

BytesAvailableFcn

Purpose Specify M-file callback function to execute when specified number of
bytes are available in input buffer, or terminator is read

Description You configure BytesAvailableFcn to execute an M-file callback function
when a bytes-available event occurs. A bytes-available event occurs
when the number of bytes specified by the BytesAvailableFcnCount
property is available in the input buffer, or after a terminator is read, as
determined by the BytesAvailableFcnMode property.

Note A bytes-available event can be generated only for asynchronous
read operations.

If the RecordStatus property value is on, and a bytes-available event
occurs, the record file records this information:

• The event type as BytesAvailable

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and
Executing Callback Functions” on page 4-32.

Characteristics Usage Any instrument object

Read only Never

Data type Callback function

Values The default value is an empty string.

Examples Create the serial port object s for a Tektronix TDS 210 two-channel
oscilloscope connected to the serial port COM1.

s = serial('COM1');

20-13

BytesAvailableFcn

Configure s to execute the M-file callback function instrcallback
when 40 bytes are available in the input buffer.

s.BytesAvailableFcnCount = 40;
s.BytesAvailableFcnMode = 'byte';
s.BytesAvailableFcn = @instrcallback;

Connect s to the oscilloscope.

fopen(s)

Write the *IDN? command, which instructs the scope to return
identification information. Because the default value for the
ReadAsyncMode property is continuous, data is read as soon as it is
available from the instrument.

fprintf(s,'*IDN?')

The resulting output from instrcallback is shown below.

BytesAvailable event occurred at 18:33:35 for the object:
Serial-COM1.

56 bytes are read and instrcallback is called once. The resulting
display is shown above.

s.BytesAvailable
ans =

56

Suppose you remove 25 bytes from the input buffer and issue the
MEASUREMENT? command, which instructs the scope to return its
measurement settings.

out = fscanf(s,'%c',25);
fprintf(s,'MEASUREMENT?')

The resulting output from instrcallback is shown below.

BytesAvailable event occurred at 18:33:48 for the object:

20-14

BytesAvailableFcn

Serial-COM1.

BytesAvailable event occurred at 18:33:48 for the object:
Serial-COM1.

There are now 102 bytes in the input buffer, 31 of which are left over
from the *IDN? command. instrcallback is called twice; once when 40
bytes are available and once when 80 bytes are available.

s.BytesAvailable
ans =

102

See Also Functions

record

Properties

BytesAvailableFcnCount, BytesAvailableFcnMode, EOSCharCode,
RecordStatus, Terminator, TransferStatus

20-15

BytesAvailableFcnCount

Purpose Specify number of bytes that must be available in input buffer to
generate bytes-available event

Description You configure BytesAvailableFcnCount to the number of bytes that
must be available in the input buffer before a bytes-available event is
generated.

Use the BytesAvailableFcnMode property to specify whether the
bytes-available event occurs after a certain number of bytes are
available or after a terminator is read.

The bytes-available event executes the M-file callback function specified
for the BytesAvailableFcn property.

You can configure BytesAvailableFcnCount only when the object is
disconnected from the instrument. You disconnect an object with the
fclose function. A disconnected object has a Status property value of
closed.

Characteristics Usage Any instrument object

Read only While open

Data type Double

Values The default value is 48.

See Also Functions

fclose

Properties

BytesAvailableFcn, BytesAvailableFcnMode, EOSCharCode, Status,
Terminator

20-16

BytesAvailableFcnMode

Purpose Specify whether bytes-available event is generated after specified
number of bytes are available in input buffer, or after terminator is read

Description For serial port, TCPIP, UDP, or VISA-serial objects, you can configure
BytesAvailableFcnMode to be terminator or byte. For all other
instrument objects, you can configure BytesAvailableFcnMode to be
eosCharCode or byte.

If BytesAvailableFcnMode is terminator, a bytes-available event
occurs when the terminator specified by the Terminator property is
read. If BytesAvailableFcnMode is eosCharCode, a bytes-available
event occurs when the End-Of-String character specified by the
EOSCharCode property is read. If BytesAvailableFcnMode is byte, a
bytes-available event occurs when the number of bytes specified by the
BytesAvailableFcnCount property is available.

The bytes-available event executes the M-file callback function specified
for the BytesAvailableFcn property.

You can configure BytesAvailableFcnMode only when the object is
disconnected from the instrument. You disconnect an object with the
fclose function. A disconnected object has a Status property value of
closed.

Characteristics Usage Any instrument object

Read only While open

Data type String

Values Serial, TCPIP, UDP, and VISA-Serial

{terminator}A bytes-available event is generated when the
terminator is reached.

byte A bytes-available event is generated when the specified
number of bytes available.

20-17

BytesAvailableFcnMode

GPIB, VISA-GPIB, VISA-VXI, and VISA-GPIB-VXI

{eosCharCode} A bytes-available event is generated when the EOS
(End-Of-String) character is reached.

byte A bytes-available event is generated when the
specified number of bytes is available.

See Also Functions

fclose

Properties

BytesAvailableFcn, BytesAvailableFcnCount, EOSCharCode, Status,
Terminator

20-18

BytesToOutput

Purpose Number of bytes currently in output buffer

Description BytesToOutput indicates the number of bytes currently in the output
buffer waiting to be written to the instrument. The property value is
continuously updated as the output buffer is filled and emptied, and is
set to 0 after the fopen function is issued.

You can make use of BytesToOutput only when writing data
asynchronously. This is because when writing data synchronously,
control is returned to the MATLAB command line only after the output
buffer is empty. Therefore, the BytesToOutput value is always 0. To
learn how to write data asynchronously, Refer to “Synchronous Versus
Asynchronous Write Operations” on page 3-17.

Use the ValuesSent property to return the total number of values
written to the instrument.

Note If you attempt to write out more data than can fit in the output
buffer, then an error is returned and BytesToOutput is 0. You specify
the size of the output buffer with the OutputBufferSize property.

Characteristics Usage Any instrument object

Read only Always

Data type Double

Values The default value is 0.

See Also Functions

fopen

Properties

OutputBufferSize, TransferStatus, ValuesSent

20-19

ChassisIndex

Purpose Specify index number of VXI chassis

Description You configure ChassisIndex to be the index number of the VXI chassis
associated with your instrument.

When you create a VISA-VXI or VISA-GPIB-VXI object, ChassisIndex
is automatically assigned the value specified in the visa function. For
both object types, the Name and RsrcName properties are automatically
updated to reflect the ChassisIndex value.

You can configure ChassisIndex only when the object is disconnected
from the instrument. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Usage VISA-VXI, VISA-GPIB-VXI

Read only While open

Data type double

Values The value is defined after the instrument object is created.

Examples Suppose you create a VISA-GPIB-VXI object associated with chassis
0 and logical address 32.

v = visa('agilent','GPIB-VXI0::32::INSTR');

The ChassisIndex, Name, and RsrcName properties reflect the VXI
chassis index number.

get(v,{'ChassisIndex','Name','RsrcName'})
ans =

[0] 'VISA-GPIB-VXI0-32' 'GPIB-VXI0::32::INSTR'

See Also Functions

fclose, visa

20-20

ChassisIndex

Properties

Name, RsrcName, Status

20-21

CompareBits

Purpose Specify number of bits that must match EOS character to complete
read operation, or to assert EOI line

Description You can configure CompareBits to be 7 or 8. If CompareBits is 7, the
read operation completes when a byte that matches the low seven bits
of the End-Of-String (EOS) character is received. The End Or Identify
(EOI) line is asserted when a byte that matches the low seven bits of
the EOS character is written. If CompareBits is 8, the read operation
completes when a byte that matches all eight bits of the EOS character
is received. The EOI line is asserted when a byte that matches all eight
bits of the EOS character is written.

You can specify the EOS character with the EOSCharCode property. You
can specify when the EOS character is used (read operation, write
operation, or both) with the EOSMode property.

Characteristics Usage GPIB

Read only Never

Data type Double

Values {8} Compare all eight EOS bits.

7 Compare the lower seven EOS bits.

See Also Properties

EOSCharCode, EOSMode

20-22

ConfirmationFcn

Purpose Specify M-file callback function to execute when confirmation event
occurs

Description You configure ConfirmationFcn to execute an M-file callback function
when a confirmation event occurs.

A confirmation event is generated when the command written to the
instrument results in the instrument being configured to a different
value than it was sent.

Note A confirmation event can be generated only when the object is
connected to the instrument with connect.

Characteristics Usage Device

Read only Never

Data type Callback

Values The default value is an empty string.

See Also Functions

connect

20-23

DataBits

Purpose Specify number of data bits to transmit

Description You can configure DataBits to be 5, 6, 7, or 8. Data is transmitted as
a series of five, six, seven, or eight bits with the least significant bit
sent first. At least seven data bits are required to transmit ASCII
characters. Eight bits are required to transmit binary data. Five and
six bit data formats are used for specialized communication equipment.

Note Both the computer and the instrument must be configured to
transmit the same number of data bits.

In addition to the data bits, the serial data format consists of a start bit,
one or two stop bits, and possibly a parity bit. You specify the number of
stop bits with the StopBits property, and the type of parity checking
with the Parity property.

Characteristics Usage Serial port, VISA-serial

Read only Never

Data type Double

Values DataBits can be 5, 6, 7, or 8. The default value is 8.

See Also Properties

Parity, StopBits

20-24

DatagramAddress

Purpose IP dotted decimal address of received datagram sender

Description DatagramAddress is the datagram sender IP address of the next
datagram to be read from the input buffer. An example of an IP dotted
decimal address string is 144.212.100.10.

When you read a datagram from the input buffer, DatagramAddress
is updated.

Characteristics Usage UDP

Read only Always

Data type String

Values The default value is ''.

See Also Functions

udp

Properties

DatagramPort, RemotePort

20-25

DatagramPort

Purpose Port number of datagram sender

Description DatagramPort is the port number of the next datagram to be read from
the input buffer. When you read a datagram from the input buffer,
DatagramPort is updated.

Characteristics Usage UDP

Read only Never

Data type Double

Values The default value is [].

See Also Functions

udp

Properties

DatagramAddress

20-26

DatagramReceivedFcn

Purpose Specify M-file callback function to execute when datagram is received

Description You configure DatagramReceivedFcn to execute an M-file callback
function when a datagram has been received. The callback executes
when a complete datagram is received in the input buffer.

Note A datagram-received event can be generated at any time during
the instrument control session.

If the RecordStatus property value is on, and a datagram-received
event occurs, the record file records this information:

• The event type as DatagramReceived

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and
Executing Callback Functions” on page 4-32

Characteristics Usage UDP

Read only Never

Data type Callback

Values The default value is ''.

See Also Functions

readasync, udp

Properties

DatagramAddress, DatagramPort, ReadAsyncMode

20-27

DatagramTerminateMode

Purpose Configure terminate read mode when reading datagrams

Description DatagramTerminateMode defines how fread and fscanf read operations
terminate. You can configure DatagramTerminateMode to be on or off.

If DatagramTerminateMode is on, the read operation terminates when
a datagram is read. When DatagramTerminateMode is off, fread and
fscanf read across datagram boundaries.

Characteristics Usage UDP

Read only Never

Data type String

Values {on} The read operation terminates when a datagram is
read.

off The read operation spans datagram boundaries.

See Also Functions

fread, fscanf, udp

20-28

DataTerminalReady

Purpose Specify state of DTR pin

Description You can configure DataTerminalReady to be on or off. If
DataTerminalReady is on, the Data Terminal Ready (DTR) pin is
asserted. If DataTerminalReady is off, the DTR pin is unasserted.

In normal usage, the DTR and Data Set Ready (DSR) pins work
together, and are used to signal if instruments are connected and
powered. However, there is nothing in the RS-232 standard that states
the DTR pin must be used in any specific way. For example, DTR
and DSR might be used for handshaking. You should refer to your
instrument documentation to determine its specific pin behavior.

You can return the value of the DSR pin with the PinStatus property.
Handshaking is described in “The Control Pins” on page 6-7.

Characteristics Usage Serial port, VISA-serial

Read only Never

Data type String

Values {on} The DTR pin is asserted.

off The DTR pin is unasserted.

See Also Properties

FlowControl, PinStatus

20-29

DriverName

Purpose Specify name of driver used to communicate with instrument

Description For device objects with a DriverType property value of MATLAB
Instrument Driver, the DriverName property specifies the name of the
MATLAB instrument driver that contains the supported instrument
commands.

For device objects with a DriverType property value of VXIplug&play,
IVI-C, or IVI-COM, the DriverName is the name of the VXIplug&play,
IVI-C, or IVI-COM driver, respectively.

Characteristics Usage Device

Read only Always

Data type String

Values DriverName is defined at device object creation.

See Also Properties

DriverType

20-30

DriverSessions

Purpose Array of driver sessions contained in IVI configuration store

Description DriverSessions identifies all the driver sessions in the IVI
configuration store. Each driver session maps a software module to a
hardware asset and its IOResourceDescriptor. A driver session also
determines default settings and behavior for its software module.

Characteristics Usage IVI configuration store object

Read only Always

Data type Array of Structs

See Also Properties

HardwareAssets, SoftwareModules

20-31

DriverType

Purpose Specify type of driver used to communicate with instrument

Description DriverType can be MATLAB interface object, MATLAB VXIplug&play,
or MATLAB IVI. If DriverType is MATLAB interface object, an
interface object is used to communicate with the instrument. If
DriverType is MATLAB VXIplug&play, a VXIplug&play driver is used to
communicate with the instrument. If DriverType is MATLAB IVI, an
IVI driver is used to communicate with the instrument.

Characteristics Usage Device

Read only Always

Data type String

Values The DriverType value is defined at the device object creation.
DriverType can be MATLAB interface object, MATLAB VXIplug&play,
or MATLAB IVI.

See Also Properties

DriverName

20-32

EOIMode

Purpose Specify if EOI line is asserted at end of write operation

Description You can configure EOIMode to be on or off. If EOIMode is on, the End
Or Identify (EOI) line is asserted at the end of a write operation. If
EOIMode is off, the EOI line is not asserted at the end of a write
operation. EOIMode applies to both binary and text write operations.

Characteristics Usage GPIB, VISA-GPIB, VISA-VXI, VISA-GPIB-VXI

Read only Never

Data type String

Values {on} The EOI line is asserted at the end of a write operation.

off The EOI line is not asserted at the end of a write
operation.

See Also Properties

BusManagementStatus

20-33

EOSCharCode

Purpose Specify EOS character

Description You can configure EOSCharCode to an integer value ranging from 0 to
255, or to the equivalent ASCII character. For example, to configure
EOSCharCode to a carriage return, you specify the value to be CR or 13.

EOSCharCode replaces \n wherever it appears in the ASCII command
sent to the instrument. Note that %s\n is the default format for the
fprintf function.

For many practical applications, you will configure both EOSCharCode
and the EOSMode property. EOSMode specifies when the EOS character is
used. If EOSMode is write or read&write (writing is enabled), the EOI
line is asserted every time the EOSCharCode value is written to the
instrument. If EOSMode is read or read&write (reading is enabled),
then the read operation might terminate when the EOSCharCode value
is detected. For GPIB objects, the CompareBits property specifies the
number of bits that must match the EOS character to complete a read
or write operation.

To see how EOSCharCode and EOSMode work together, refer to the
example given in the EOSMode property description.

Characteristics Usage GPIB, VISA-GPIB, VISA-VXI, VISA-GPIB-VXI

Read only Never

Data type ASCII value

Values An integer value ranging from 0 to 255 or the equivalent ASCII
character. The default value is LF, which corresponds to a line feed.

See Also Functions

fprintf

Properties

CompareBits, EOSMode

20-34

EOSMode

Purpose Specify when EOS character is written or read

Description For GPIB, VISA-GPIB, VISA-VXI, and VISA-GPIB-VXI objects, you can
configure EOSMode to be none, read, write, or read&write.

If EOSMode is none, the End-Of-String (EOS) character is ignored.
If EOSMode is read, the EOS character is used to terminate a read
operation. If EOSMode is write, the EOS character is appended to the
ASCII command being written whenever \n is encountered. When the
EOS character is written to the instrument, the End Or Identify (EOI)
line is asserted. If EOSMode is read&write, the EOS character is used in
both read and write operations.

The EOS character is specified by the EOSCharCode property. For GPIB
objects, the CompareBits property specifies the number of bits that
must match the EOS character to complete a read operation, or to
assert the EOI line.

Rules for Completing a Read Operation

For any EOSMode value, the read operation completes when

• The EOI line is asserted.

• Specified number of values is read.

• A timeout occurs.

Additionally, if EOSMode is read or read&write (reading is enabled),
then the read operation can complete when the EOSCharCode property
value is detected.

Rules for Completing a Write Operation

Regardless of the EOSMode value, a write operation completes when

• The specified number of values is written.

• A timeout occurs.

20-35

EOSMode

Additionally, if EOSMode is write or read&write, the EOI line is asserted
each time the EOSCharCode property value is written to the instrument.

Characteristics Usage GPIB, VISA-GPIB, VISA-VXI, VISA-GPIB-VXI

Read only Never

Data type String

Values {none} The EOS character is ignored.

read The EOS character is used for each read operation.

write The EOS character is used for each write operation.

read&write The EOS character is used for each read and write
operation.

Examples Suppose you input a nominal voltage signal of 2.0 volts into a function
generator, and read back the voltage value using fscanf.

g = gpib('ni',0,1);
fopen(g)
fprintf(g,'Volt?')
out = fscanf(g)
out =
+2.00000E+00

The EOSMode and EOSCharCode properties are configured to terminate
the read operation when an E character is encountered.

set(g,'EOSMode','read')
set(g,'EOSCharCode','E')
fprintf(g,'Volt?')
out = fscanf(g)
out =
+2.00000

20-36

EOSMode

See Also Properties

CompareBits, EOIMode, EOSCharCode

20-37

ErrorFcn

Purpose Specify M-file callback function to execute when error event occurs

Description You configure ErrorFcn to execute an M-file callback function when an
error event occurs.

Note An error event is generated only for asynchronous read and write
operations.

An error event is generated when a timeout occurs. A timeout occurs if
a read or write operation does not successfully complete within the time
specified by the Timeout property. An error event is not generated for
configuration errors such as setting an invalid property value.

If the RecordStatus property value is on, and an error event occurs, the
record file records this information:

• The event type as Error

• The error message

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and
Executing Callback Functions” on page 4-32.

Characteristics Usage Any instrument object

Read only Never

Data type Callback function

Values The default value is an empty string.

20-38

ErrorFcn

See Also Functions

record

Properties

RecordStatus, Timeout

20-39

FlowControl

Purpose Specify data flow control method to use

Description You can configure FlowControl to be none, hardware, or software.
If FlowControl is none, then data flow control (handshaking) is not
used. If FlowControl is hardware, then hardware handshaking is
used to control data flow. If FlowControl is software, then software
handshaking is used to control data flow.

Hardware handshaking typically utilizes the Request to Send (RTS) and
Clear to Send (CTS) pins to control data flow. Software handshaking
uses control characters (Xon and Xoff) to control data flow. To learn
more about hardware and software handshaking, refer to “Using
Control Pins” on page 6-28.

You can return the value of the CTS pin with the PinStatus property.
You can specify the value of the RTS pin with the RequestToSend
property. However, if FlowControl is hardware, and you specify a value
for RequestToSend, then that value might not be honored.

Note Although you might be able to configure your instrument for both
hardware handshaking and software handshaking at the same time,
the toolbox does not support this behavior.

Characteristics Usage Serial port, VISA-serial

Read only Never

Data type String

Values {none} No flow control is used.

hardware Hardware flow control is used.

software Software flow control is used.

20-40

FlowControl

See Also Properties

PinStatus, RequestToSend

20-41

HandshakeStatus

Purpose State of GPIB handshake lines

Description HandshakeStatus is a structure array that contains the fields
DataValid, NotDataAccepted, and NotReadyForData. These fields
indicate the state of the Data Valid (DAV), Not Data Accepted (NDAC)
and Not Ready For Data (NRFD) GPIB lines, respectively.

HandshakeStatus can be on or off for any of these fields. A value of
on indicates the associated line is asserted. A value of off indicates
the associated line is unasserted.

Characteristics Usage GPIB

Read only Never

Data type Structure

Values on The associated handshake line is asserted

off The associated handshake line is unasserted

The default value is instrument dependent.

20-42

HardwareAssets

Purpose Array of hardware assets contained in IVI configuration store

Description HardwareAssets specifies all hardware assets in the IVI configuration
store, each hardware asset referencing an IOResourceDescriptor.

Characteristics Usage IVI configuration store object

Read only Always

Data type Array of Structs

Values The default value is empty.

See Also Properties

DriverSessions, SoftwareModules

20-43

HwIndex

Purpose Hardware index of device group object

Description Every device group object contained by a device object has an associated
hardware index that is used to reference that device group object. For
example, to configure property values for an individual device group
object, you must reference the group object through its property name
and the appropriate HwIndex value.

HwIndex provides a convenient way to programmatically access device
group objects.

Characteristics Usage Device Group

Read only Always

Data type Double

Values The default value is defined at the device group object creation.

See Also Properties

HwName

20-44

HwName

Purpose Hardware name of device group object

Description Every device group object contained by a device object has an associated
hardware name that can be used to reference that device group object.

HwName provides a convenient way to programmatically access device
group objects.

Characteristics Usage Device Group

Read only Always

Data type String

Values The default value is defined at the device group object creation.

See Also Properties

HwIndex

20-45

InputBufferSize

Purpose Specify size of input buffer in bytes

Description You configure InputBufferSize as the total number of bytes that can
be stored in the software input buffer during a read operation.

A read operation is terminated if the amount of data stored in the input
buffer equals the InputBufferSize value. You can read text data with
the fgetl, fgets, or fscanf functions. You can read binary data with
the fread function.

You can configure InputBufferSize only when the instrument object is
disconnected from the instrument. You disconnect an object with the
fclose function. A disconnected object has a Status property value of
closed.

If you configure InputBufferSize while there is data in the input
buffer, then that data is flushed.

Characteristics Usage Any instrument object

Read only While open

Data type Double

Values The default value is 512.

See Also Functions

fclose, fgetl, fgets, fopen, fread, fscanf

Properties

Status

20-46

InstrumentModel

Purpose Instrument model that object connects to

Description InstrumentModel returns the information returned by the instrument
identification command, e.g., *IDN?, *ID?. The instrument identification
command is defined by the instrument driver.

Characteristics Usage Device

Read only Always

Data type String

Values InstrumentModel will be an empty string until the object is connected
to the instrument with the connect function and the property value
is queried with the get function.

See Also Functions

connect, get

20-47

Interface

Purpose Interface object that communicates with instrument

Description If DriverType is MATLAB Instrument Driver, then Interface is
the interface object used to communicate with the instrument. If
DriverType is VXIplug&play or IVI-C, then Interface is the handle
to the VISA session that is used to communicate with the instrument.
If DriverType is IVI-COM, Interface is the handle to the IVI driver’s
default interface.

Characteristics Usage Device

Read only Always

Data type String

Values Interface is defined at device object creation.

See Also Properties

DriverType, LogicalName, RsrcName

20-48

InterfaceIndex

Purpose Specify USB interface number

Description You configure InterfaceIndex to be the USB interface number.

The Name and RsrcName properties are automatically updated to reflect
the InterfaceIndex value.

You can configure InterfaceIndex only when the object is disconnected
from the instrument. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Usage VISA-USB

Read only While open

Data type Double

See Also Functions

fclose

Properties

Name, RsrcName

20-49

InterruptFcn

Purpose Specify M-file callback function to execute when interrupt event occurs

Description You configure InterruptFcn to execute an M-file callback function
when an interrupt event occurs. An interrupt event is generated when a
VXI bus signal or a VXI bus interrupt is received from the instrument.

Note An interrupt event can be generated at any time during the
instrument control session.

If the RecordStatus property value is on, and an interrupt event occurs,
the record file records

• The event type as Interrupt

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Characteristics Usage VISA-VXI

Read only Never

Data type String

Values The default value is an empty string.

See Also Functions

record

Properties

RecordStatus

20-50

LANName

Purpose Specify LAN device name

Description You configure LANName to be the LAN (Local Area Network) device name.

The Name and RsrcName properties are automatically updated to reflect
the LANName value.

You can configure LANName only when the object is disconnected from
the instrument. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Usage VISA-TCPIP

Read only While open

Data type String

See Also Functions

fclose

Properties

Name, RsrcName

20-51

LocalHost

Purpose Specify local host

Description LocalHost specifies the local host name or the IP dotted decimal
address. An example dotted decimal address is 144.212.100.10. If you
have only one address or you do not specify this property, the object
uses the default IP address when you connect to the hardware with
the fopen function.

You can configure LocalHost only when the object is disconnected
from the hardware. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Usage TCPIP, UDP

Read only While open

Data type String

Values The default value is an empty string.

See Also Functions

fclose, fopen, tcpip, udp

Properties

LocalPort, RemoteHost, Status

20-52

LocalPort

Purpose Specify local host port for connection

Description You configure LocalPort to be the port value of the local host. The
default value is [].

If LocalPortMode is set to auto or if LocalPort is [], the property is
assigned any free port when you connect the object to the hardware with
the fopen function. If LocalPortMode is set to manual, the specified
LocalPort value is used when you issue fopen. If you explicitly
configure LocalPort, LocalPortMode is automatically set to manual.

You can configure LocalPort only when the object is disconnected
from the hardware. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Usage TCPIP, UDP

Read only While open

Data type Double

Values The default value is [].

See Also Functions

fclose, fopen, tcpip, udp

Properties

LocalHost, LocalPortMode, Status

20-53

LocalPortMode

Purpose Specify local host port selection mode

Description LocalPortMode specifies the selection mode for the LocalPort property
when you connect a TCPIP or UDP object.

If LocalPortMode is set to auto, MATLAB uses any free local port. If
LocalPortMode is set to manual, the specified LocalPort value is used
when you issue the fopen function. If you explicitly specify a value for
LocalPort, LocalPortMode is automatically set to manual.

Characteristics Usage TCPIP, UDP

Read only While open

Data type String

Values {auto} Use any free local port.

manual Use the specified local port value.

See Also Functions

fclose, fopen, tcpip, udp

Properties

LocalHost, LocalPort, Status

20-54

LogicalAddress

Purpose Specify logical address of VXI instrument

Description For VISA-VXI and VISA-GPIB-VXI objects, you configure
LogicalAddress to be the logical address of the VXI instrument. You
must include the logical address as part of the resource name during
object creation using the visa function.

The Name and RsrcName properties are automatically updated to reflect
the LogicalAddress value.

You can configure LogicalAddress only when the object is disconnected
from the instrument. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Usage VISA-VXI, VISA-GPIB-VXI

Read only While open

Data type Double

Values The value is defined when the instrument object is created.

Examples This example creates a VISA-VXI object associated with chassis 4 and
logical address 1, and then returns the logical address.

vv = visa('agilent','VXI4::1::INSTR');
vv.LogicalAddress
ans =

1

See Also Functions

fclose, visa

Properties

Name, RsrcName, Status

20-55

LogicalName

Purpose Specify description of interface used to communicate with instrument

Description For device objects with a DriverType property value of MATLAB
Instrument Driver, the LogicalName property specifies the type of
interface used to communicate with the instrument. For example, a
LogicalName of GPIB0-2 indicates that communication is through a
GPIB board at index 0 with an instrument at primary address 2.

For device objects with a DriverType property value of VXIplug&play,
the LogicalName is the resource name used to communicate with the
instrument.

For device objects with a DriverType property value of IVI-C or
IVI-COM, the LogicalName is the LogicalName associated with the
IVI-C or IVI-COM driver.

Characteristics Usage Device

Read only Always

Data type String

Values LogicalName is defined at device object creation.

See Also Properties

DriverType, Interface, RsrcName

20-56

LogicalNames

Purpose Array of logical names contained in IVI configuration store

Description Each entry in LogicalNames identifies a logical name in the IVI
configuration store. Each logical name references a driver session in
the configuration store, and is used in creating device objects with the
icdevice function.

Characteristics Usage IVI configuration store object

Read only Always

Data type Array of Structs

See Also Functions

icdevice

Properties

DriverSessions

20-57

ManufacturerID

Purpose Specify manufacturer ID of USB instrument

Description You configure ManufacturerID to be the manufacturer ID of the USB
instrument.

The Name and RsrcName properties are automatically updated to reflect
the ManufacturerID value.

You can configure ManufacturerID only when the object is disconnected
from the instrument. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Usage VISA-USB

Read only While open

Data type String

See Also Functions

fclose

Properties

Name, RsrcName

20-58

MappedMemoryBase

Purpose Base memory address of mapped memory

Description MappedMemoryBase is the base address of the mapped memory used for
low level read and write operations.

The memory address is returned as a string representing a hexadecimal
value. For example, if the mapped memory base is 200000, then
MappedMemoryBase returns 200000H. If no memory is mapped,
MappedMemoryBase is 0H.

Use the memmap function to map the specified amount of memory in the
specified address space (A16, A24, or A32) with the specified offset. Use
the memunmap function to unmap the memory space.

Characteristics Usage VISA-VXI, VISA-GPIB-VXI

Read only Always

Data type String

Values The default value is 0H.

Examples Create the VISA-VXI object vv associated with a VXI chassis with index
0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Map 16 bytes in the A16 address space with no offset, and then return
the base address of the mapped memory.

memmap(vv,'A16',0,16)
vv.MappedMemoryBase
ans =

16737610H

20-59

MappedMemoryBase

See Also Functions

memmap, memunmap

Properties

MappedMemorySize

20-60

MappedMemorySize

Purpose Size of mapped memory for low-level read and write operations

Description MappedMemorySize indicates the amount of memory mapped for
low-level read and write operations.

Use the memmap function to map the specified amount of memory in the
specified address space (A16, A24, or A32) with the specified offset. Use
the memunmap function to unmap the memory space.

Characteristics Usage VISA-VXI, VISA-GPIB-VXI

Read only Always

Data type Double

Values The default value is 0.

Examples Create the VISA-VXI object vv associated with a VXI chassis with index
0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

Map 16 bytes in the A16 address space with no offset, and then return
the size of the mapped memory.

memmap(vv,'A16',0,16)
vv.MappedMemorySize
ans =

16

See Also Functions

memmap, memunmap

Properties

MappedMemoryBase

20-61

MasterLocation

Purpose Full pathname of master configuration store file

Description MasterLocation identifies the master (default) configuration store
location.

Characteristics Usage IVI configuration store object

Read only Always

Data type String

Values The default value is set at IVI installation.

See Also Properties

ActualLocation, ProcessLocation

20-62

MemoryBase

Purpose Base address of A24 or A32 space

Description MemoryBase indicates the base address of the A24 or A32 space. The
value is returned as a string representing a hexadecimal value.

All VXI instruments have an A16 address space that is 16 bits wide.
There are also 24- and 32-bit wide address spaces known as A24 and
A32. Some instruments require the additional memory associated
with the A24 or A32 address space when the 64 bytes of A16 space
are insufficient for performing necessary functions. A bit in the A16
address space is set allowing the instrument to recognize commands to
its A24 or A32 space.

An instrument cannot use both the A24 and A32 address space. The
address space is given by the MemorySpace property. If MemorySpace is
A16, then MemoryBase is 0H.

Characteristics Usage VISA-VXI, VISA-GPIB-VXI

Read only Always

Data type String

Values The default value is 0H.

Examples Create the VISA-VXI object vv associated with a VXI chassis with index
0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

The MemorySpace property indicates that the A24 memory space is
supported.

vv.MemorySpace
ans =
A16/A24

20-63

MemoryBase

The base address of the A24 space is

vv.MemoryBase
ans =
'200000H'

See Also Properties

MemorySpace

20-64

MemoryIncrement

Purpose Specify whether VXI register offset increments after data is transferred

Description You can configure MemoryIncrement to be block or FIFO. If
MemoryIncrement is block, the memread and memwrite functions
increment the offset after every read and write operation, and
data is transferred from or to consecutive memory elements. If
MemoryIncrement is FIFO, the memread and memwrite functions do not
increment the VXI register offset, and data is always read from or
written to the same memory element.

Characteristics Usage VISA-VXI, VISA-GPIB-VXI

Read only Never

Data type String

Values {block} Increment the VXI register offset.

FIFO Do not increment the VXI register offset.

Examples Create the VISA-VXI object v associated with a VXI chassis with index
0, and an instrument with logical address 8.

v = visa('ni','VXI0::8::INSTR');
fopen(v)

Configure the hardware for a FIFO read and write operation.

set(v,'MemoryIncrement','FIFO')

Write two values to the VXI register starting at offset 16. Because
MemoryIncrement is FIFO, the VXI register offset does not change and
both values are written to offset 16.

memwrite(v,[1984 2000],16,'uint32','A16')

20-65

MemoryIncrement

Read the value at offset 16. The value returned is the second value
written with the memwrite function.

memread(v,16,'uint32')
ans =
2000

Read two values starting at offset 16. Note that both values are read
at offset 16.

memread(v,16,'uint32','A16',2);
ans =
2000
2000

Configure the hardware for a block read and write operation.

set(v,'MemoryIncrement','block')

Write two values to the VXI register starting at offset 16. The first
value is written to offset 16 and the second value is written to offset 20
because a uint32 value consists of four bytes.

memwrite(v,[1984 2000],16,'uint32','A16')

Read the value at offset 16. The value returned is the first value written
with the memwrite function.

memread(v,16,'uint32')
ans =
1984

Read two values starting at offset 16. The first value is read at offset
16 and the second value is read at offset 20.

memread(v,16,'uint32','A16',2);
ans =
1984
2000

20-66

MemoryIncrement

See Also Functions

mempeek, mempoke, memread, memwrite

20-67

MemorySize

Purpose Size of memory requested in A24 or A32 address space

Description MemorySize indicates the size of the memory requested by the
instrument in the A24 or A32 address space.

Some instruments use the A24 or A32 address space when the 64
bytes of A16 space are not enough for performing necessary functions.
An instrument cannot use both the A24 and A32 address space. The
address space is given by the MemorySpace property. If MemorySpace is
A16, then MemorySize is 0.

Characteristics Usage VISA-VXI, VISA-GPIB-VXI

Read only Always

Data type Double

Values The default value is 0.

Examples Create the VISA-VXI object vv associated with a VXI chassis with index
0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

The MemorySpace property indicates that the A24 memory space is
supported.

vv.MemorySpace
ans =
A16/A24

The size of the A24 space is

vv.MemorySize
ans =
262144

20-68

MemorySize

See Also Properties

MemorySpace

20-69

MemorySpace

Purpose Address space used by instrument

Description MemorySpace indicates the address space requested by the instrument.
MemorySpace can be A16, A16/A24, or A16/A32. If MemorySpace is
A16, the instrument uses only the A16 address space. If MemorySpace
is A16/A24, the instrument uses the A16 and A24 address space. If
MemorySpace is A16/A32, the instrument uses the A16 and A32 address
space.

All VXI instruments have an A16 address space that is 16 bits wide.
There are also 24- and 32-bit wide address spaces known as A24 and
A32, respectively. Some instruments use this memory when the 64
bytes of A16 space are not enough for performing necessary functions.
An instrument cannot use both the A24 and A32 address space.

The size of the memory is given by the MemorySize property. The base
address of the memory is given by the MemoryBase property.

Characteristics Usage VISA-VXI, VISA-GPIB-VXI

Read only Always

Data type String

Values {A16} The instrument uses the A16 address space.

A16/A24 The instrument uses the A16 and A24 address space.

A16/A32 The instrument uses the A16 and A32 address space.

Examples Create the VISA-VXI object vv associated with a VXI chassis with index
0, and an Agilent E1432A digitizer with logical address 130.

vv = visa('agilent','VXI0::130::INSTR');
fopen(vv)

20-70

MemorySpace

Return the memory space supported by the instrument.

vv.MemorySpace
ans =
A16/A24

This value indicates that the instrument supports A24 memory space in
addition to the A16 memory space.

See Also Properties

MemoryBase, MemorySize

20-71

ModelCode

Purpose Specify model code of USB instrument

Description You configure ModelCode to be the model code of the USB instrument.

The Name and RsrcName properties are automatically updated to reflect
the ModelCode value.

You can configure ModelCode only when the object is disconnected from
the instrument. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Usage VISA-USB

Read only While open

Data type String

See Also Functions

fclose

Properties

Name, RsrcName

20-72

Name

Purpose Specify descriptive name for instrument object

Description You configure Name to be a descriptive name for an instrument object.

When you create an instrument object, a descriptive name is
automatically generated and stored in Name. However, you can change
this value at any time. As shown below, the components of Name reflect
the instrument object type and the input arguments you supply to the
creation function.

Instrument
Object Default Value of Name

GPIB GPIB and
BoardIndex-PrimaryAddress-SecondaryAddress

serial port Serial and Port

TCPIP TCPIP and RemoteHost

UDP UDP and RemoteHost

VISA-serial VISA-Serial and Port

VISA-GPIB VISA-GPIB and
BoardIndex-PrimaryAddress-SecondaryAddress

VISA-VXI VISA-VXI and ChassisIndex-LogicalAddress

VISA-GPIB-VXI VISA-GPIB-VXI and
ChassisIndex-LogicalAddress

VISA-TCPIP VISA-TCPIP and BoardIndex-RemoteHost-LANName

VISA-RSIB VISA-RSIB and RemoteHost

VISA-USB VISA-USB and BoardIndex-ManufacturerID-
ModelCode-SerialNumber-InterfaceIndex

If the secondary address is not specified when a GPIB or VISA-GPIB
object is created, then Name does not include this component.

20-73

Name

If you change the value of any property that is a component of Name
(for example, Port or PrimaryAddress), then Name is automatically
updated to reflect those changes.

Characteristics Usage Any instrument object

Read-only Never

Data type String

Values Name is automatically defined at object creation time. The value of Name
depends on the specific instrument object you create.

20-74

Name (iviconfigurationstore)

Purpose Name of IVI configuration server

Description Name identifies the name of the IVI configuration store server. This is
not user-configurable.

Characteristics Usage IVI configuration store object

Read only Always

Data type String

20-75

ObjectVisibility

Purpose Control access to instrument object

Description The ObjectVisibility property provides a way for application
developers to prevent end-user access to the instrument objects created
by their application. When an object’s ObjectVisibility property is set
to off, instrfind and instrreset do not return or delete those objects.

Objects that are not visible are still valid. If you have access to the
object (for example, from within the M-file that creates it), then you can
set and get its properties and pass it to any function that operates on
instrument objects.

Characteristics Usage Any instrument object

Read only Never

Data type String

Values The default value is on.

{on} Object is visible to instrfind and instrreset

off Object is not visible from the command line (except by
instrfindall)

Examples The following statement creates an instrument object with its
ObjectVisibility property set to off:

g = gpib('keithley',0,2,'ObjectVisibility','off');
instrfind
ans =

[]

However, since the object is in the workspace (g), you can access it.

get(g,'ObjectVisibility')
ans =

20-76

ObjectVisibility

off

See Also Functions

instrfind, instrfindall, instrreset

20-77

OutputBufferSize

Purpose Specify size of output buffer in bytes

Description You configure OutputBufferSize as the total number of bytes that can
be stored in the software output buffer during a write operation.

An error occurs if the output buffer cannot hold all the data to be
written. You write text data with the fprintf function. You write
binary data with the fwrite function.

You can configure OutputBufferSize only when the instrument object
is disconnected from the instrument. You disconnect an object with the
fclose function. A disconnected object has a Status property value of
closed.

Characteristics Usage Any instrument object

Read only While open

Data type Double

Values The default value is 512.

See Also Functions

fprintf, fwrite

Properties

Status

20-78

OutputEmptyFcn

Purpose Specify M-file callback function to execute when output buffer is empty

Description You configure OutputEmptyFcn to execute an M-file callback function
when an output-empty event occurs. An output-empty event is
generated when the last byte is sent from the output buffer to the
instrument.

Note An output-empty event can be generated only for asynchronous
write operations.

If the RecordStatus property value is on, and an output-empty event
occurs, the record file records this information:

• The event type as OutputEmpty

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and
Executing Callback Functions” on page 4-32.

Characteristics Usage Any instrument object

Read
only

Never

Data type Callback function

Values The default value is an empty string.

See Also Functions

record

20-79

OutputEmptyFcn

Properties

RecordStatus

20-80

Parent

Purpose Parent (device object) of device group object

Description The parent of a device group object is defined as the device object that
contains the device group object.

You can create a copy of the device object containing a particular device
group object by returning the value of Parent. This copy can be treated
like any other device object. For example, you can configure property
values, connect to the instrument, and so on.

Characteristics Usage Device group

Read only Always

Data type Device object

Values Parent is defined at device object creation.

20-81

Parity

Purpose Specify type of parity checking

Description You can configure Parity to be none, odd, even, mark, or space. If
Parity is none, parity checking is not performed and the parity bit is
not transmitted. If Parity is odd, the number of mark bits (1s) in the
data is counted, and the parity bit is asserted or unasserted to obtain an
odd number of mark bits. If Parity is even, the number of mark bits
in the data is counted, and the parity bit is asserted or unasserted to
obtain an even number of mark bits. If Parity is mark, the parity bit is
asserted. If Parity is space, the parity bit is unasserted.

Parity checking can detect errors of one bit only. An error in two bits
might cause the data to have a seemingly valid parity, when in fact it
is incorrect. To learn more about parity checking, refer to “The Parity
Bit” on page 6-11.

In addition to the parity bit, the serial data format consists of a start
bit, between five and eight data bits, and one or two stop bits. You
specify the number of data bits with the DataBits property, and the
number of stop bits with the StopBits property.

Characteristics Usage Serial port, VISA-serial

Read only Never

Data type String

Values {none} No parity checking

odd Odd parity checking

even Even parity checking

mark Mark parity checking

space Space parity checking

20-82

Parity

See Also Properties

DataBits, StopBits

20-83

PinStatus

Purpose State of CD, CTS, DSR, and RI pins

Description PinStatus is a structure array that contains the fields CarrierDetect,
ClearToSend, DataSetReady and RingIndicator. These fields indicate
the state of the Carrier Detect (CD), Clear to Send (CTS), Data Set
Ready (DSR) and Ring Indicator (RI) pins, respectively. Refer to “The
Control Pins” on page 6-7 to learn more about these pins.

PinStatus can be on or off for any of these fields. A value of on
indicates the associated pin is asserted. A value of off indicates the
associated pin is unasserted. For serial port objects, a pin status event
occurs when any of these pins changes its state. A pin status event
executes the M-file specified by PinStatusFcn.

In normal usage, the Data Terminal Ready (DTR) and DSR pins
work together, while the Request To Send (RTS) and CTS pins
work together. You can specify the state of the DTR pin with the
DataTerminalReady property. You can specify the state of the RTS pin
with the RequestToSend property.

Refer to “Example: Connecting Two Modems” on page 6-28 for an
example that uses PinStatus.

Characteristics Usage Serial port, VISA-serial

Read only Always

Data type Structure

Values off The associated pin is asserted

on The associated pin is asserted

The default value is instrument dependent.

20-84

PinStatus

See Also Properties

DataTerminalReady, PinStatusFcn, RequestToSend

20-85

PinStatusFcn

Purpose Specify M-file callback function to execute when CD, CTS, DSR, or RI
pin changes state

Description You configure PinStatusFcn to execute an M-file callback function
when a pin status event occurs. A pin status event occurs when the
Carrier Detect (CD), Clear to Send (CTS), Data Set Ready (DSR) or
Ring Indicator (RI) pin changes state. A serial port pin changes state
when it is asserted or unasserted. Information about the state of these
pins is recorded in the PinStatus property.

Note A pin status event can be generated at any time during the
instrument control session.

If the RecordStatus property value is on, and a pin status event occurs,
the record file records this information:

• The event type as PinStatus

• The pin that changed its state, and pin state as either on or off

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

To learn how to create a callback function, refer to “Creating and
Executing Callback Functions” on page 4-32.

Characteristics Usage Serial port

Read only Never

Data type Callback function

Values The default value is an empty string.

20-86

PinStatusFcn

See Also Functions

record

Properties

PinStatus, RecordStatus

20-87

Port

Purpose Specify platform-specific serial port name

Description You configure Port to be the name of a serial port on your platform.
Port specifies the physical port associated with the object and the
instrument.

When you create a serial port or VISA-serial object, Port is
automatically assigned the port name specified for the serial or visa
function.

You can configure Port only when the object is disconnected from the
instrument. You disconnect an object with the fclose function. A
disconnected object has a Status property value of closed.

Characteristics Usage Serial port, VISA-serial

Read only While open

Data type String

Values The value is determined when the instrument object is created.

Examples Suppose you create a serial port and VISA-serial object associated with
serial port COM1.

s = serial('COM1')
vs = visa('ni','ASRL1::INSTR')

The Port property values are given below.

get([s vs],'Port')
ans =

'COM1'
'ASRL1'

See Also Functions

fclose, serial, visa

20-88

Port

Properties

Name, RsrcName, Status

20-89

PrimaryAddress

Purpose Specify primary address of GPIB instrument

Description For GPIB and VISA-GPIB objects, you configure PrimaryAddress to
be the GPIB primary address associated with your instrument. The
primary address can range from 0 to 30, and you must specify it during
object creation using the gpib or visa function. For VISA-GPIB-VXI
objects, PrimaryAddress is read-only, and the value is returned
automatically by the VISA interface after the object is connected to the
instrument with the fopen function.

For GPIB and VISA-GPIB objects, the Name property is automatically
updated to reflect the PrimaryAddress value. For VISA-GPIB
objects, the RsrcName property is automatically updated to reflect the
PrimaryAddress value.

You can configure PrimaryAddress only when the GPIB or VISA-GPIB
object is disconnected from the instrument. You disconnect a connected
object with the fclose function. A disconnected object has a Status
property value of closed.

Characteristics Usage GPIB, VISA-GPIB, VISA-GPIB-VXI

Read only While open (GPIB, VISA-GPIB), always
(VISA-GPIB-VXI)

Data type Double

Values PrimaryAddress can range from 0 to 30. The value is determined when
the instrument object is created.

20-90

PrimaryAddress

Examples This example creates a VISA-GPIB object associated with board 0,
primary address 1, and secondary address 8, and then returns the
primary address.

vg = visa('agilent','GPIB0::1::8::INSTR');
vg.PrimaryAddress
ans =

1

See Also Functions

fclose, gpib, visa

Properties

Name, RsrcName, Status

20-91

ProcessLocation

Purpose Configuration store file for process to use if master configuration store
is not used

Description ProcessLocation identifies an IVI configuration store being used as an
alternative to the master configuration store. The use of an alternative
is particular to each iviconfigurationstore object, and is specified
when the object is created.

Characteristics Usage IVI configuration store object

Read only Always

Data type String

Values The default value is an empty string.

See Also Functions

iviconfigurationstore

Properties

ActualLocation, MasterLocation

20-92

PublishedAPIs

Purpose Array of published APIs in IVI configuration store

Description PublishedAPIs identifies the published APIs in the IVI configuration
store server. This is not user-configurable.

Characteristics Usage IVI configuration store object

Read only Always

Data type Array of Structs

20-93

ReadAsyncMode

Purpose Specify whether asynchronous read operation is continuous or manual

Description You can configure ReadAsyncMode to be continuous or manual. If
ReadAsyncMode is continuous, the object continuously queries the
instrument to determine if data is available to be read. If data is
available, it is automatically read and stored in the input buffer. If
issued, the readasync function is ignored.

If ReadAsyncMode is manual, the object will not query the instrument to
determine if data is available to be read. Instead, you must manually
issue the readasync function to perform an asynchronous read
operation. Because readasync checks for the terminator, this function
can be slow. To increase speed, you should configure ReadAsyncMode
to continuous.

Note If the instrument is ready to transmit data, then it will do so
regardless of the ReadAsyncMode value. Therefore, if ReadAsyncMode is
manual and a read operation is not in progress, then data can be lost. To
guarantee that all transmitted data is stored in the input buffer, you
should configure ReadAsyncMode to continuous.

You can determine the amount of data available in the input buffer with
the BytesAvailable property. For either ReadAsyncMode value, you can
bring data into the MATLAB workspace with one of the synchronous
read functions such as fscanf, fgetl, fgets, or fread.

Characteristics Usage Serial port, TCPIP, UDP, VISA-serial

Read only Never

Data type String

20-94

ReadAsyncMode

Values {continuous} Continuously query the instrument to determine if
data is available to be read.

manual Manually read data from the instrument using the
readasync function.

See Also Functions

fgetl, fgets, fread, fscanf, readasync

Properties

BytesAvailable, InputBufferSize

20-95

RecordDetail

Purpose Specify amount of information saved to record file

Description You can configure RecordDetail to be compact or verbose. If
RecordDetail is compact, the number of values written to the
instrument, the number of values read from the instrument, the data
type of the values, and event information are saved to the record file.
If RecordDetail is verbose, the data transferred to and from the
instrument is also saved to the record file.

The verbose record file structure is shown in “Example: Recording
Information to Disk” on page 12-10.

Characteristics Usage Any instrument object

Read only Never

Data type String

Values {compact} The number of values written to the instrument, the
number of values read from the instrument, the data
type of the values, and event information are saved to
the record file.

verbose The data written to the instrument, and the data read
from the instrument are also saved to the record file.

See Also Functions

record

Properties

RecordMode, RecordName, RecordStatus

20-96

RecordMode

Purpose Specify whether data and event information are saved to one or to
multiple record files

Description You can configure RecordMode to be overwrite, append, or index. If
RecordMode is overwrite, then the record file is overwritten each time
recording is initiated. If RecordMode is append, then data is appended
to the record file each time recording is initiated. If RecordMode is
index, a different record file is created each time recording is initiated,
each with an indexed filename.

You can configure RecordMode only when the object is not recording.
You terminate recording with the record function. A object that is not
recording has a RecordStatus property value of off.

You specify the record filename with the RecordName property. The
indexed filename follows a prescribed set of rules. Refer to “Specifying a
Filename” on page 12-7 for a description of these rules.

Characteristics Usage Any instrument object

Read only While recording

Data type String

Values {overwrite} The record file is overwritten.

append Data is appended to the record file.

index Multiple record files are written, each with an indexed
filename.

Examples Suppose you create the serial port object s associated with the serial
port COM1.

s = serial('COM1');
fopen(s)

20-97

RecordMode

Specify the record filename with the RecordName property, configure
RecordMode to index, and initiate recording.

s.RecordName = 'myrecord.txt';
s.RecordMode = 'index';
record(s)

The record filename is automatically updated with an indexed filename
after recording is turned off.

record(s,'off')
s.RecordName
ans =
myrecord01.txt

Disconnect s from the instrument, and remove s from memory and from
the MATLAB workspace.

fclose(s)
delete(s)
clear s

See Also Functions

record

Properties

RecordDetail, RecordName, RecordStatus

20-98

RecordName

Purpose Specify name of record file

Description You configure RecordName to be the name of the record file. You can
specify any value for RecordName — including a directory path —
provided the filename is supported by your operating system.

MATLAB supports any filename supported by your operating system.
However, if you access the file through MATLAB, you might need to
specify the filename using single quotes. For example, suppose you
name the record file my record.txt. To type this file at the MATLAB
command line, you must include the name in quotes.

type('my record.txt')

You can specify whether data and event information are saved to one
disk file or to multiple disk files with the RecordMode property. If
RecordMode is index, then the filename follows a prescribed set of
rules. Refer to “Specifying a Filename” on page 12-7 for a description of
these rules.

You can configure RecordName only when the object is not recording.
You terminate recording with the record function. An object that is not
recording has a RecordStatus property value of off.

Characteristics Usage Any instrument object

Read only While recording

Data type String

Values The default record file name is record.txt.

See Also Functions

record

Properties

RecordDetail, RecordMode, RecordStatus

20-99

RecordStatus

Purpose Status of whether data and event information are saved to record file

Description You can configure RecordStatus to be off or on with the record
function. If RecordStatus is off, then data and event information are
not saved to a record file. If RecordStatus is on, then data and event
information are saved to the record file specified by RecordName.

Use the record function to initiate or complete recording. RecordStatus
is automatically configured to reflect the recording state.

Characteristics Usage Any instrument object

Read only Always

Data type String

Values {off} Data and event information are not written to a record
file

on Data and event information are written to a record file

See Also Functions

record

Properties

RecordDetail, RecordMode, RecordName

20-100

RemoteHost

Purpose Specify remote host

Description RemoteHost specifies the remote host name or IP dotted decimal
address. An example dotted decimal address is 144.212.100.10.

For TCPIP objects, you can configure RemoteHost only when the object
is disconnected from the hardware. You disconnect a connected object
with the fclose function. A disconnected object has a Status property
value of closed.

For UDP objects, you can configure RemoteHost at any time. If the
object is open, a warning is issued if the remote address is invalid.

Characteristics Usage TCPIP, UDP

Read only While open (TCPIP), never (UDP)

Data type String

Values The value is defined when you create the TCPIP or UDP object.

See Also Functions

fclose, fopen, tcpip, udp

Properties

LocalHost, RemotePort, Status

20-101

RemotePort

Purpose Specify remote host port for connection

Description You can configure RemotePort to be any port number between 1 and
65535. The default value is 80 for TCPIP objects and 9090 for UDP
objects.

For TCPIP objects, you can configure RemotePort only when the object
is disconnected from the hardware. You disconnect a connected object
with the fclose function. A disconnected object has a Status property
value of closed.

For UDP objects, you can configure RemotePort at any time.

Characteristics Usage TCPIP, UDP

Read only While open (TCPIP), never (UDP)

Data type Double

Values Any port number between 1 and 65535. The default value is 80 for
TCPIP objects and 9090 for UDP objects.

See Also Functions

fclose, fopen, tcpip, udp

Properties

RemoteHost, LocalPort, Status

20-102

RequestToSend

Purpose Specify state of RTS pin

Description You can configure RequestToSend to be on or off. If RequestToSend
is on, the Request to Send (RTS) pin is asserted. If RequestToSend is
off, the RTS pin is unasserted.

In normal usage, the RTS and Clear to Send (CTS) pins work together,
and are used as standard handshaking pins for data transfer. In this
case, RTS and CTS are automatically managed by the DTE and DCE.
However, there is nothing in the RS-232 standard that states the RTS
pin must to be used in any specific way. Therefore, if you manually
configure the RequestToSend value, it is probably for nonstandard
operations.

If your instrument does not use hardware handshaking in the standard
way, and you need to manually configure RequestToSend, then you
should configure the FlowControl property to none. Otherwise, the
RequestToSend value that you specify might not be honored. Refer to
your instrument documentation to determine its specific pin behavior.

You can return the value of the CTS pin with the PinStatus property.
Handshaking is described in “The Control Pins” on page 6-7.

Characteristics Usage Serial port, VISA-serial

Read only Never

Data type String

Values {on} The RTS pin is asserted.

off The RTS pin is unasserted.

See Also Properties

FlowControl, PinStatus

20-103

Revision

Purpose IVI configuration store version

Description Revision identifies the version of the IVI configuration store. This is
not user-configurable.

Characteristics Usage IVI configuration store object

Read only Always

Data type String

20-104

RsrcName

Purpose Resource name for VISA instrument

Description RsrcName indicates the resource name for a VISA instrument. When
you create a VISA object, RsrcName is automatically assigned the value
specified in the visa function.

The resource name is a symbolic name for the instrument. The resource
name you supply to visa depends on the interface and has the format
shown below. The components in brackets are optional and have a
default value of 0, except port_number, which has a default value of 1.

Interface Resource Name

VXI VXI[chassis]::VXI_logical_address::INSTR

GPIB-VXI GPIB-VXI[chassis]::VXI_logical_address::INSTR

GPIB GPIB[board]::primary_address[::secondary_address]::INSTR

TCPIP TCPIP[board]::remote_host[::lan_device_name]::INSTR

RSIB RSIB::remote_host::INSTR

Serial ASRL[port_number]::INSTR

USB USB[board]::manid::model_code::serial_No[::interface_No]::INSTR

If you change the BoardIndex, ChassisIndex, InterfaceIndex,
LANName, LogicalAddress, ManufacturerID, ModelCode, Port,
PrimaryAddress, RemoteHost, SecondaryAddress, or SerialNumber
property value, RsrcName is automatically updated to reflect the change.

Characteristics Usage VISA-GPIB, VISA-VXI, VISA-GPIB-VXI, VISA-serial

Read only Always

Data type String

Values The value is defined when the instrument object is created.

20-105

RsrcName

Examples To create a VISA-GPIB object associated with a GPIB controller with
board index 0 and an instrument with primary address 1, you supply
the following resource name to the visa function.

vg = visa('ni','GPIB0::1::INSTR');

To create a VISA-VXI object associated with a VXI chassis with index 0
and an instrument with logical address 130, you supply the following
resource name to the visa function.

vv = visa('agilent','VXI0::130::INSTR');

To create a VISA-GPIB-VXI object associated with a VXI chassis with
index 0 and an instrument with logical address 80, you supply the
following resource name to the visa function.

vgv = visa('agilent','GPIB-VXI0::80::INSTR');

To create a VISA-serial object associated with the COM1 serial port, you
supply the following resource name to the visa function.

vs = visa('ni','ASRL1::INSTR');

See Also Functions

visa

Properties

BoardIndex, ChassisIndex, InterfaceIndex, LANName,
LogicalAddress, ManufacturerID, ModelCode, Port, PrimaryAddress,
RemoteHost, SecondaryAddress, SerialNumber

20-106

SecondaryAddress

Purpose Specify secondary address of GPIB instrument

Description For GPIB and VISA-GPIB objects, you configure SecondaryAddress
to be the GPIB secondary address associated with your instrument.
You can initially specify the secondary address during object creation
using the gpib or visa function. For VISA-GPIB-VXI objects,
SecondaryAddress is read-only, and the value is returned automatically
by the VISA interface after the object is connected to the instrument
with the fopen function.

For GPIB objects, SecondaryAddress can range from 96 to 126, or it
can be 0 indicating that no secondary address is used. For VISA-GPIB
objects, SecondaryAddress can range from 0 to 30. If your instrument
does not have a secondary address, then SecondaryAddress is 0.

For GPIB and VISA-GPIB objects, the Name property is automatically
updated to reflect the SecondaryAddress value. For VISA-GPIB
objects, the RsrcName property is automatically updated to reflect the
SecondaryAddress value.

You can configure SecondaryAddress only when the GPIB or
VISA-GPIB object is disconnected from the instrument. You disconnect
a connected object with the fclose function. A disconnected object has
a Status property value of closed.

Characteristics Usage GPIB, VISA-GPIB, VISA-GPIB-VXI

Read only While open (GPIB, VISA-GPIB), always
(VISA-GPIB-VXI)

Data type Double

Values For GPIB objects, SecondaryAddress can range from 96 to 126, or it can
be 0. For VISA-GPIB objects, SecondaryAddress can range from 0 to
30. The default value is 0.

20-107

SecondaryAddress

Examples This example creates a VISA-GPIB object associated with board 0,
primary address 1, and secondary address 8, and then returns the
secondary address.

vg = visa('agilent','GPIB0::1::8::INSTR');
vg.SecondaryAddress
ans =

8

See Also Functions

fclose, gpib, visa

Properties

Name, RsrcName, Status

20-108

SerialNumber

Purpose Specify index of USB instrument on USB hub

Description You configure SerialNumber to be the index of the USB instrument
on the USB hub.

The Name and RsrcName properties are automatically updated to reflect
the SerialNumber value.

You can configure SerialNumber only when the object is disconnected
from the instrument. You disconnect a connected object with the fclose
function. A disconnected object has a Status property value of closed.

Characteristics Usage VISA-USB

Read only While open

Data type String

See Also Functions

fclose

Properties

Name, RsrcName

20-109

ServerDescription

Purpose IVI configuration store server description

Description ServerDescription contains the description of the IVI configuration
store server. This is not user-configurable.

Characteristics Usage IVI configuration store object

Read only Always

Data type String

20-110

Sessions

Purpose Array of driver sessions in IVI configuration store

Description Sessions identifies the sessions in the IVI configuration store, including
the driver sessions.

Characteristics Usage IVI configuration store object

Read only Always

Data type Array of Structs

See Also Properties

DriverSessions

20-111

Slot

Purpose Slot location of VXI instrument

Description Slot indicates the physical slot of the VXI instrument. Slot can be
any value between 0 and 12.

Characteristics Usage VISA-VXI, VISA-GPIB-VXI

Read only Always

Data type Double

Values The property value is defined when the instrument object is connected.

20-112

SoftwareModules

Purpose Array of software modules in IVI configuration store

Description SoftwareModules identifies the software modules in the IVI
configuration store. These are installed by the user, but are not
configurable. They include instrument drivers.

Characteristics Usage IVI configuration store object

Read only Always

Data type Array of Structs

Values The default value is empty when no software modules are installed.

See Also Properties

DriverSessions, HardwareAssets

20-113

SpecificationVersion

Purpose IVI configuration server specification version that this server revision
complies with

Description SpecificationVersion identifies the specification version of the IVI
configuration store server. This is not user-configurable.

Characteristics Usage IVI configuration store object

Read only Always

Data type String

20-114

Status

Purpose Status of whether object is connected to instrument

Description Status can be open or closed. If Status is closed, the object is not
connected to the instrument. If Status is open, the object is connected
to the instrument.

Before you can write or read data, you must connect the object to the
instrument with the fopen function. You use the fclose function to
disconnect an object from the instrument.

Characteristics Usage Any instrument object

Read only Always

Data type String

Values {closed} The object is not connected to the instrument.

open The object is connected to the instrument.

See Also Functions

fclose, fopen

20-115

StopBits

Purpose Specify number of bits used to indicate end of byte

Description You can configure StopBits to be 1, 1.5, or 2 for serial port objects, or
1 or 2 for VISA-serial objects If StopBits is 1, one stop bit is used to
indicate the end of data transmission. If StopBits is 2, two stop bits
are used to indicate the end of data transmission. If StopBits is 1.5,
the stop bit is transferred for 150% of the normal time used to transfer
one bit.

Note Both the computer and the instrument must be configured to
transmit the same number of stop bits.

In addition to the stop bits, the serial data format consists of a start bit,
between five and eight data bits, and possibly a parity bit. You specify
the number of data bits with the DataBits property, and the type of
parity checking with the Parity property.

Characteristics Usage Serial port, VISA-serial

Read only Never

Data type double

Values Serial Port

{1} One stop bit is transmitted to indicate the end of a
byte.

1.5 The stop bit is transferred for 150% of the normal
time used to transfer one bit.

2 Two stop bits are transmitted to indicate the end
of a byte.

20-116

StopBits

VISA-Serial

{1} One stop bit is transmitted to indicate the end of a
byte.

2 Two stop bits are transmitted to indicate the end
of a byte

See Also Properties

DataBits, Parity

20-117

Tag

Purpose Specify label to associate with instrument object

Description You configure Tag to be a string value that uniquely identifies an
instrument object.

Tag is particularly useful when constructing programs that would
otherwise need to define the instrument object as a global variable, or
pass the object as an argument between callback routines.

You can return the instrument object with the instrfind function by
specifying the Tag property value.

Characteristics Usage Any instrument object

Read only Never

Data type String

Values The default value is an empty string.

Examples Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');
fopen(s);

You can assign s a unique label using Tag.

set(s,'Tag','MySerialObj')

You can access s in the MATLAB workspace or in an M-file using the
instrfind function and the Tag property value.

s1 = instrfind('Tag','MySerialObj');

See Also Functions

instrfind

20-118

Terminator

Purpose Specify terminator character

Description For serial, TCPIP, UDP, and VISA-serial objects, you can configure
Terminator to an integer value ranging from 0 to 127, to the equivalent
ASCII character, or to empty (’’). For example, to configure Terminator
to a carriage return, you specify the value to be CR or 13. To configure
Terminator to a line feed, you specify the value to be LF or 10. For
serial port objects, you can also set Terminator to CR/LF or LF/CR. If
Terminator is CR/LF, the terminator is a carriage return followed by a
line feed. If Terminator is LF/CR, the terminator is a line feed followed
by a carriage return. Note that there are no integer equivalents for
these two values.

Additionally, you can set Terminator to a 1-by-2 cell array. The first
element of the cell is the read terminator and the second element of the
cell array is the write terminator.

When performing a write operation using the fprintf function, all
occurrences of \n are replaced with the Terminator value. Note that
%s\n is the default format for fprintf. A read operation with fgetl,
fgets, or fscanf completes when the Terminator value is read. The
terminator is ignored for binary operations.

You can also use the terminator to generate a bytes-available event
when the BytesAvailableFcnMode is set to terminator.

Characteristics Usage Serial, TCPIP, UDP, VISA-serial

Read only Never

Data type ASCII value

Values An integer value ranging from 0 to 127, the equivalent ASCII character,
or empty (’’). For serial port objects, CR/LF and LF/CR are also accepted
values. You specify different read and write terminators as a 1-by-2
cell array.

20-119

Terminator

See Also Functions

fgetl, fgets, fprintf, fscanf

Properties

BytesAvailableFcnMode

20-120

Timeout

Purpose Specify waiting time to complete read or write operation

Description You configure Timeout to be the maximum time (in seconds) to wait to
complete a read or write operation.

If a timeout occurs, then the read or write operation aborts. Additionally,
if a timeout occurs during an asynchronous read or write operation, then

• An error event is generated.

• The M-file callback function specified for ErrorFcn is executed.

Characteristics Usage Any instrument object

Read only Never

Data type Double

Values The default value is 10 seconds.

See Also Properties

ErrorFcn

20-121

TimerFcn

Purpose Specify M-file callback function to execute when predefined period
passes

Description You configure TimerFcn to execute an M-file callback function when a
timer event occurs. A timer event occurs when the time specified by the
TimerPeriod property passes. Time is measured relative to when the
object is connected to the instrument with fopen.

Note A timer event can be generated at any time during the instrument
control session.

If the RecordStatus property value is on, and a timer event occurs, the
record file records this information:

• The event type as Timer

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Some timer events might not be processed if your system is significantly
slowed or if the TimerPeriod value is too small.

To learn how to create a callback function, refer to “Creating and
Executing Callback Functions” on page 4-32.

Characteristics Usage Any instrument object

Read only Never

Data type Callback function

Values The default value is an empty string.

20-122

TimerFcn

See Also Functions

fopen, record

Properties

RecordStatus, TimerPeriod

20-123

TimerPeriod

Purpose Specify period between timer events

Description TimerPeriod specifies the time, in seconds, that must pass before the
callback function specified for TimerFcn is called. Time is measured
relative to when the object is connected to the instrument with fopen.

Some timer events might not be processed if your system is significantly
slowed or if the TimerPeriod value is too small.

Characteristics Usage Any instrument object

Read only Never

Data type Callback function

Values The default value is 1 second. The minimum value is 0.01 second.

See Also Functions

fopen

Properties

TimerFcn

20-124

TransferDelay

Purpose Specify use of TCP segment transfer algorithm

Description You can configure TransferDelay to on or off. If TransferDelay is
on, small segments of outstanding data are collected and sent in a
single packet when acknowledgment (ACK) arrives from the server. If
TransferDelay is off, data is sent immediately to the network.

If a network is slow, you can improve its performance by configuring
TransferDelay to on. However, on a fast network acknowledgments
arrive quickly and there is negligible difference between configuring
TransferDelay to on or off.

Note that the segment transfer algorithm used by TransferDelay
is Nagle’s algorithm.

Characteristics Usage TCPIP

Read only Never

Data type String

Values {on} Use the TCP segment transfer algorithm.

off Do not use the TCP segment transfer algorithm.

See Also Functions

tcpip

20-125

TransferStatus

Purpose Status of whether asynchronous read or write operation is in progress

Description TransferStatus can be idle, read, write, or read&write. If
TransferStatus is idle, then no asynchronous read or write operations
are in progress. If TransferStatus is read, then an asynchronous
read operation is in progress. If TransferStatus is write, then an
asynchronous write operation is in progress. If TransferStatus is
read&write, then both an asynchronous read and an asynchronous
write operation are in progress.

You can write data asynchronously using the fprintf or fwrite
functions. You can read data asynchronously using the readasync
function, or by configuring ReadAsyncMode to continuous (serial,
TCPIP, UDP, and VISA-serial objects only). For detailed information
about asynchronous read and write operations, refer to “Communicating
with Your Instrument” on page 2-8.

While readasync is executing for any instrument object,
TransferStatus might indicate that data is being read even though
data is not filling the input buffer. However, if ReadAsyncMode is
continuous, TransferStatus indicates that data is being read only
when data is actually filling the input buffer.

Characteristics Usage Any instrument object

Read only Always

Data type String

Values {idle} No asynchronous operations are in progress.

read An asynchronous read operation is in progress.

write An asynchronous write operation is in progress.

read&write Asynchronous read and write operations are in
progress.

20-126

TransferStatus

See Also Functions

fprintf, fwrite, readasync

Properties

ReadAsyncMode

20-127

TriggerFcn

Purpose Specify M-file callback function to execute when trigger event occurs

Description You configure TriggerFcn to execute an M-file callback function when a
trigger event occurs. A trigger event is generated when a trigger occurs
in software, or on one of the VXI hardware trigger lines. You configure
the trigger type with the TriggerType property.

Note A trigger event can be generated at any time during the
instrument control session.

If the RecordStatus property value is on, and a trigger event occurs,
the record file records

• The event type as Trigger

• The time the event occurred using the format day-month-year
hour:minute:second:millisecond

Characteristics Usage VISA-VXI

Read only Never

Data type String

Values The default value is an empty string.

See Also Functions

record

Properties

RecordStatus, TriggerLine, TriggerType

20-128

TriggerLine

Purpose Specify trigger line on VXI instrument

Description You can configure TriggerLine to be TTL0 through TTL7, ECL0, or ECL1.
You can use only one trigger line at a time.

You can specify the trigger type with the TriggerType property.
When TriggerType is hardware, the line triggered is given by
the TriggerLine value. When the TriggerType is software, the
TriggerLine value is ignored.

You execute a trigger for a VISA-VXI object with the trigger function.

Characteristics Usage VISA-VXI

Read only Never

Data type String

Values TriggerLine can be TTL0 through TTL7, ECL0, or ECL1. The default
value is TTL0.

See Also Functions

trigger

Properties

TriggerType

20-129

TriggerType

Purpose Specify trigger type

Description You can configure TriggerType to be software or hardware. If
TriggerType is software, then a software trigger is used. If
TriggerType is hardware, then the trigger line specified by the
TriggerLine property is used.

You execute a trigger for a VISA-VXI object with the trigger function.

Characteristics Usage VISA-VXI

Read only Never

Data type String

Values {hardware} A hardware trigger is used.

software A software trigger is used.

See Also Functions

trigger

Properties

TriggerLine

20-130

Type

Purpose Instrument object type

Description Type indicates the type of the object. Type is automatically defined after
the instrument object is created with the serial, gpib, or visa function.

Using the instrfind function and the Type value, you can quickly
identify instrument objects of a given type.

Characteristics Usage Any instrument object

Read only Always

Data type String

Values gpib The object type is GPIB.

serial The object type is serial port.

tcpip The object type is TCPIP.

udp The object type is UDP.

visa-gpib The object type is VISA-GPIB.

visa-vxi The object type is VISA-VXI.

visa-gpib-vxi The object type is VISA-GPIB-VXI.

visa-serial The object type is VISA-serial.

The value is automatically determined when the instrument object
is created.

20-131

Type

Examples Create a serial port object associated with the serial port COM1. The
value of the Type property is serial, which is the object class.

s = serial('COM1');
s.Type
ans =
serial

See Also Functions

instrfind, gpib, serial, tcpip, udp, visa

20-132

UserData

Purpose Specify data to associate with instrument object

Description You configure UserData to store data that you want to associate with an
instrument object. The object does not use this data directly, but you
can access it using the get function or the dot notation.

Characteristics Usage Any instrument object

Read only Never

Data type Any type

Values The default value is an empty vector.

Examples Suppose you create the serial port object associated with the serial port
COM1.

s = serial('COM1');

You can associate data with s by storing it in UserData.

coeff.a = 1.0;
coeff.b = -1.25;
s.UserData = coeff

20-133

ValuesReceived

Purpose Total number of values read from instrument

Description ValuesReceived indicates the total number of values read from
the instrument. The value is updated after each successful read
operation, and is set to 0 after the fopen function is issued. If the
terminator is read from the instrument, then this value is reflected
by ValuesReceived.

If you are reading data asynchronously, use the BytesAvailable
property to return the number of bytes currently available in the input
buffer.

When performing a read operation, the received data is represented by
values rather than bytes. A value consists of one or more bytes. For
example, one uint32 value consists of four bytes. Refer to “The Output
Buffer and Data Flow” on page 3-13 for more information about bytes
and values.

Characteristics Usage Any instrument object

Read only Always

Data type Double

Values The default value is 0.

Examples Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');
fopen(s)

20-134

ValuesReceived

If you write the RS232? command, and then read back the response
using fscanf, ValuesReceived is 17 because the instrument is
configured to send the LF terminator.

fprintf(s,'RS232?')
out = fscanf(s)
out =
9600;0;0;NONE;LF
s.ValuesReceived
ans =

17

See Also Functions

fopen

Properties

BytesAvailable

20-135

ValuesSent

Purpose Total number of values written to instrument

Description ValuesSent indicates the total number of values written to the
instrument. The value is updated after each successful write operation,
and is set to 0 after the fopen function is issued. If you are writing the
terminator, then ValuesSent reflects this value.

If you are writing data asynchronously, use the BytesToOutput property
to return the number of bytes currently in the output buffer.

When performing a write operation, the transmitted data is represented
by values rather than bytes. A value consists of one or more bytes. For
example, one uint32 value consists of four bytes. Refer to “The Output
Buffer and Data Flow” on page 3-13 for more information about bytes
and values.

Characteristics Usage Any instrument object

Read
only

Always

Data type Double

Values The default value is 0.

Examples Suppose you create a serial port object associated with the serial port
COM1.

s = serial('COM1');
fopen(s)

20-136

ValuesSent

If you write the *IDN? command using the fprintf function, then
ValuesSent is 6 because the default data format is %s\n, and the
terminator was written.

fprintf(s,'*IDN?')
s.ValuesSent
ans =

6

See Also Functions

fopen

Properties

BytesToOutput

20-137

Vendor

Purpose IVI configuration server vendor

Description Vendor identifies the vendor of the IVI configuration server. This is
not user-configurable.

Characteristics Usage IVI configuration store object

Read only Always

Data type String

20-138

21

Blocks — Alphabetical List

Query Instrument

Purpose Query or read instrument data

Library Instrument Control Toolbox

Description The Query Instrument block configures and opens an interface to an
instrument, initializes the instrument, and queries the instrument for
data. The configuration and initialization happen at the start of the
model execution. The block queries the instrument for data during
model run-time.

The block as no input ports. The block has one output port corresponding
to the data received from the instrument.

Dialog
Box

Block sample time
The Block sample time is the only parameter setting outside of
the dialog tabs. The default value of -1 sets the block to inherit
timing. A positive value is used as the sample period.

The other parameters of the Query Instrument block are divided among
three tabs:

• Hardware Configuration

• Instrument Initialization

• Query

Following is an illustration of each tab, and descriptions of the
parameters that it controls.

Hardware Configuration

The Hardware Configuration tab is where you define the settings
for communications with your instrument. You have two choices about
establishing an interface:

• Specify new hardware configuration

• Use interface object from MATLAB workspace

21-2

Query Instrument

The following figure shows the Hardware Configuration tab set to
specify a new hardware configuration using a serial port interface.

Because some of these parameters apply to more than one interface
type, they appear here in alphabetical order.

Baudrate
The rate at which bits are transmitted for the serial or VISA
serial interface.

Board index
The index of the board used for GPIB, VISA GPIB, VISA TCPIP,
or VISA USB interface to the instrument.

21-3

Query Instrument

Board vendor
The vendor of the GPIB board used for the interface to the
instrument. Your choices are Advantech, Agilent, Capital
Equipment, Contec, ICS, IOTech, Keithley, Measurement
Computing, and National Instruments.

Chassis index
The index number of the VXI chassis. Used for VISA VXI and
VISA VXI-GPIB interface types.

Input buffer size
The total number of bytes that can be stored in the software input
buffer during a read operation.

Interface
Select the type of hardware interface to the instrument. Your
options are those interfaces supported by the Instrument Control
Toolbox. The previous figure shows a configuration for a serial
port interface.

Logical address
The logical address of the VXI instrument. Used for VISA VXI
and VISA VXI-GPIB interface types.

Manufacturer ID
The manufacturer ID of the VISA USB instrument.

Model code
The model code of the VISA USB instrument.

Port
The port for the serial interface: COM1, COM2, etc.

Primary address
The primary address of the instrument on the GPIB.

Remote host
The hostname or IP address of the instrument. Used for UDP,
TCPIP, or VISA TCPIP interface types.

21-4

Query Instrument

Remote port
The port on the instrument or remote host used for communication.
Used for UDP, TCPIP, or VISA TCPIP interface types.

Secondary address
The secondary address of the instrument on the GPIB.

Serial number
The serial number of the VISA USB instrument.

Timeout
Time allowed to complete the query operation.

VISA vendor
The vendor of the VISA used for any of the VISA interface types.
Your choices are Agilent, National Instruments, and Tektronix.

Instrument Initialization

The Instrument Initialization tab is where you define what happens
when you first open your connection to the instrument.

21-5

Query Instrument

None
The default initialization option is none.

Send string
A string sent to the instrument as an instrument command to
initialize the instrument or set it up in a known state.

Execute function
Any function that has as its only argument the interface object
representing the instrument. You can write this function to
include several instrument commands and initialization data.

21-6

Query Instrument

Query

The Query tab is where you define the optional query command, set
the format for the response, and define what the block does after the
initial instrument response.

Query command
This is the query command that is sent to the instrument. It is
usually a request for instrument status or data. This command
is optional—If you are retrieving information or data from the
instrument and no query command is necessary to do that, you
can leave this field blank.

21-7

Query Instrument

Data format
Your options are ASCII, Binary, or Binblock.

ASCII format string
Available only when the format is ASCII, this defines the format
string for the data. For a list of formats, see the fscanf function.

Precision
Used for binary or binblock format. Your options are 8-bit, 16-bit,
or 32-bit integer; 8-bit, 16-bit, or 32-bit unsigned integer; or 32-bit
or 64-bit float.

Byte order
When using binary or binblock format with more than 8 bits, this
specifies the instrument’s byte order for the data. Your options
are Big Endian or Little Endian.

Binary values to read
Used for binary format. Specify the number of binary values to
read from the instrument.

After initial response
This defines the action to take after the first response from the
instrument. Your options are Repeat query for new data, Recycle
original data, Hold final value, Output zero, or Stop simulation.

Enable frame output
A frame is a sequence of samples combined into a single vector. In
frame-based processing all the samples in a frame are processed
simultaneously. In sample-based processing, samples are
processed one at a time. The advantage of frame-based processing
is that it can greatly increase the speed of a simulation. For
example, you might use frames if you are reading a waveform
from your instrument rather than a single-point measurement.

Frame size
Frame size determines the number of samples in a frame.

21-8

Query Instrument

Note Hardware information shown in the dialog box is determined
and cached when the dialog box is first opened. To refresh the display
with new values, restart MATLAB.

See Also To Instrument

21-9

To Instrument

Purpose Send simulation data to instrument

Library Instrument Control Toolbox

Description The To Instrument block configures and opens an interface to
an instrument, initializes the instrument, and sends data to the
instrument. The configuration and initialization happen at the start
of the model execution. The block sends data to the instrument during
model run-time.

The block as no output ports. The block has one input port corresponding
to the data sent to the instrument.

Dialog
Box

Block sample time
The Block sample time is the only parameter setting outside of
the dialog tabs. The default value of -1 sets the block to inherit
timing. A positive value is used as the sample period.

The other parameters of the To Instrument block are divided among
three tabs:

• Hardware Configuration

• Instrument Initialization

• Send

Following is an illustration of each tab, and descriptions of the
parameters that it controls.

Hardware Configuration

The Hardware Configuration tab is where you define the settings
for communications with your instrument. You have two choices about
establishing an interface:

• Specify new hardware configuration

• Use interface object from MATLAB workspace

21-10

To Instrument

The following figure shows the Hardware Configuration tab set to
specify a new hardware configuration using a serial port interface.

Because some of these parameters apply to more than one interface
type, they appear here in alphabetical order.

Baudrate
The rate at which bits are transmitted for the serial or VISA
serial interface.

Board index
The index of the board used for GPIB, VISA GPIB, VISA TCPIP,
or VISA USB interface to the instrument.

Board vendor
The vendor of the GPIB board used for the interface to the
instrument. Your choices are Advantech, Agilent, Capital
Equipment, Contec, ICS, IOTech, Keithley, Measurement
Computing, and National Instruments.

21-11

To Instrument

Chassis index
The index number of the VXI chassis. Used for VISA VXI and
VISA VXI-GPIB interface types.

Input buffer size
The total number of bytes that can be stored in the software input
buffer during a read operation.

Interface
Select the type of hardware interface to the instrument. Your
options are those interfaces supported by the Instrument Control
Toolbox. The previous figure shows a configuration for a serial
port interface.

Logical address
The logical address of the VXI instrument. Used for VISA VXI
and VISA VXI-GPIB interface types.

Manufacturer ID
The manufacturer ID of the VISA USB instrument.

Model code
The model code of the VISA USB instrument.

Port
The port for the serial interface: COM1, COM2, etc.

Primary address
The primary address of the instrument on the GPIB.

Remote host
The hostname or IP address of the instrument. Used for UDP,
TCPIP, or VISA TCPIP interface types.

Remote port
The port on the instrument or remote host used for communication.
Used for UDP, TCPIP, or VISA TCPIP interface types.

Secondary address
The secondary address of the instrument on the GPIB.

21-12

To Instrument

Serial number
The serial number of the VISA USB instrument.

Timeout
Time allowed to complete the query operation.

VISA vendor
The vendor of the VISA used for any of the VISA interface types.
Your choices are Agilent, National Instruments, and Tektronix.

Instrument Initialization

The Instrument Initialization tab is where you define what happens
when you first open your connection to the instrument.

None
The default initialization option is none.

21-13

To Instrument

Send string
A string sent to the instrument as an instrument command to
initialize the instrument or set it up in a known state.

Execute function
Any function that has as its only argument the interface object
representing the instrument. You can write this function to
include several instrument commands and initialization data.

Send

The Send tab is where you define the optional command sent to the
instrument and the format of the sent data.

Command
This is the command that is sent to the instrument with the
Simulink data. This command is optional—If you leave this field

21-14

To Instrument

blank, the Simulink data is sent to the instrument without any
prefix or additional formatting.

Output format
Your options are ASCII, Binary, or Binblock.

ASCII format string
Available only when the format is ASCII, this defines the format
string for the data. For a list of formats, see the fprintf function.

Precision
Used for binary or binblock format. Your options are 8-bit, 16-bit,
or 32-bit integer; 8-bit, 16-bit, or 32-bit unsigned integer; or 32-bit
or 64-bit float.

Byte order
When using binary or binblock format with more than 8 bits, this
specifies the instrument’s byte order for the data. Your options
are Big Endian or Little Endian.

Note Hardware information shown in the dialog box is determined
and cached when the dialog box is first opened. To refresh the display
with new values, restart MATLAB.

See Also Query Instrument

21-15

A

Vendor Driver
Requirements and
Limitations

This appendix describes the requirements and limitations for the vendor
GPIB and VISA drivers supported by the Instrument Control Toolbox.

Driver Requirements (p. A-2) Required versions of vendors’
drivers.

GPIB Driver Limitations (p. A-3) Known limitations with supported
GPIB drivers.

VISA Driver Limitations (p. A-7) Known limitations with supported
VISA drivers.

Note The limitations described in this appendix are restricted to the
limitations directly associated with using the Instrument Control Toolbox.

A Vendor Driver Requirements and Limitations

Driver Requirements
You can use the Instrument Control Toolbox with the GPIB and VISA drivers
listed below.

Interface Vendor
Minimum Driver
Requirements

Advantech Advantech version 1.0

Agilent SICL version
H.012.02.00

Capital Equipment
Corporation

CEC-488 version 5.08

CONTEC API-GPLV version 1.33

ICS Electronics ICS 488.2 version
2.0.3.15

IOTech IOTech version 1.0

Keithley Keithley-488 version
5.08

Measurement
Computing Corporation

GPIB-32 version 2.12

GPIB

National Instruments NI-488 version 1.6

Agilent Agilent IO Libraries
version M.01.01.04

National Instruments NI-VISA version 3.0

VISA

Tektronix Tektronix VISA version
2.0

See the following sections for a description of

• “GPIB Driver Limitations” on page A-3

• “VISA Driver Limitations” on page A-7

A-2

GPIB Driver Limitations

GPIB Driver Limitations
This section lists the GPIB driver limitations categorized by vendor:

• “Advantech” on page A-3

• “Agilent Technologies” on page A-3

• “Capital Equipment Corporation” on page A-4

• “ICS Electronics” on page A-4

• “IOTech” on page A-5

• “Keithley” on page A-5

• “Measurement Computing Corporation” on page A-6

Advantech
The Advantech GPIB driver has these limitations:

• Asynchronous read and write operations are not supported. Therefore,
Advantech GPIB objects do not support the following toolbox functionality:

- The readasync function

- The async flag for the fprintf and fwrite functions

- BytesAvailableAction and OutputEmptyAction properties

Agilent Technologies
The Agilent GPIB driver has these limitations:

• Asynchronous read and write operations are not supported. Therefore,
Agilent GPIB objects do not support the following toolbox functionality:

- The readasync function

- The async flag for the fprintf and fwrite functions

- BytesAvailableAction and OutputEmptyAction properties

• The End Or Identify (EOI) line is not asserted when the End-Of-String
(EOS) character is written to the hardware. Therefore, when the EOSMode
property is configured to write and the EOIMode property is configured to

A-3

A Vendor Driver Requirements and Limitations

on, the EOI line is not asserted when the EOSCharCode property value
is written to the hardware.

• All eight bits are used for the EOS comparison. Therefore, the only value
supported by the CompareBits property is 8.

• A board index value of 0 is not supported.

• An error is not reported for an invalid primary address. Instead, the read
and write operations will time out.

Capital Equipment Corporation
The Capital Equipment Corporation (CEC) GPIB driver has these limitations:

• Asynchronous read operations are not supported. Therefore, CEC GPIB
objects do not support the following toolbox functionality:

- The readasync function

- The async flag for the fprintf and fwrite functions

- The BytesAvailableAction and OutputEmptyAction properties

• The Handshake and Bus Management line values are not provided. The
BusManagementStatus and HandshakeStatus properties always return
the line values as on.

• The EOI line is not asserted when the EOS character is written to the
hardware. Therefore, when the EOSMode property is configured to write
and the EOIMode property is configured to on, the EOI line is not asserted
when the EOSCharCode property value is written to the hardware.

• All eight bits are used for the EOS comparison. Therefore, the only value
supported by the CompareBits property is 8.

• You should not simultaneously use a GPIB controller address of 0 and an
instrument primary address of 0.

ICS Electronics
The ICS Electronics GPIB adaptor only works with their USB GPIB controller.
However, you can still use their other controllers (PCI/PCMCIA) by using the
mcc adaptor. See Solution 1-1BFZ2 on the MathWorks support Web site.

A-4

http://www.mathworks.com/support/solutions/data/1-1BFZ2.html

GPIB Driver Limitations

IOTech
The IOTech GPIB driver has these limitations:

• Asynchronous read and write operations are not supported. Therefore,
IOTech GPIB objects do not support the following toolbox functionality:

- The readasync function

- The async flag for the fprintf and fwrite functions

- The BytesAvailableAction and OutputEmptyAction properties.

• Incorrect values are returned for the REN and IFC bus management lines.
The BusManagementStatus property always returns a value of on for the
RemoteEnable and the InterfaceClear fields.

• The EOI line is not asserted when the EOS character is written to the
hardware. Therefore, when the EOSMode property is configured to write
and the EOIMode property is configured to on, the EOI line will not be
asserted when the EOSCharCode property value is written to the hardware.

Keithley
The Keithley GPIB driver has these limitations:

• Asynchronous read and write operations are not supported. Therefore,
Keithley GPIB objects do not support the following toolbox functionality:

- The readasync function

- The async flag for the fprintf and fwrite functions

- The BytesAvailableAction and OutputEmptyAction properties

• The Handshake and Bus Management line values are not provided. The
BusManagementStatus and HandshakeStatus properties always return
the line value as on.

• The EOI line is not asserted when the EOS character is written to the
hardware. Therefore, when the EOSMode property is configured to write
and the EOIMode property is configured to on, the EOI line will not be
asserted when the EOSCharCode property value is written to the hardware.

• All eight bits are used for the EOS comparison. Therefore, the only value
supported by the CompareBits property is 8.

A-5

A Vendor Driver Requirements and Limitations

• You should not simultaneously use a GPIB controller address of 0 and an
instrument primary address of 0.

Measurement Computing Corporation
The Measurement Computing Corporation GPIB driver does not support
asynchronous notification for the completion of read and write operations.
Therefore, Measurement Computing Corporation GPIB objects do not support
the following toolbox functionality:

• The readasync function

• The async flag for the fprintf and fwrite functions

• The BytesAvailableAction and OutputEmptyAction properties

A-6

VISA Driver Limitations

VISA Driver Limitations
This section lists the VISA driver limitations categorized by vendor:

Agilent Technologies
The Agilent VISA driver has these known limitations:

• Asynchronous read and write operations for GPIB, GPIB-VXI and
VXI VISA objects are not supported. Therefore, the following toolbox
functionality is not supported for these objects:

- The readasync function

- The BytesAvailableAction and OutputEmptyAction properties

• All eight bits are used for the EOS comparison. Therefore, the only value
supported by the CompareBits property is 8.

National Instruments
The National Instruments VISA driver uses all eight bits for the EOS
comparison. Therefore, the only value that the CompareBits property
supports is 8.x

A-7

A Vendor Driver Requirements and Limitations

A-8

B

Bibliography

[1] Axelson, Jan, Serial Port Complete, Lakeview Research, Madison, WI,
1998.

[2] Courier High Speed Modems User’s Manual, U.S. Robotics, Inc., Skokie,
IL, 1994.

[3] TIA/EIA-232-F, Interface Between Data Terminal Equipment and Data
Circuit-Terminating Equipment Employing Serial Binary Data Interchange.

[4] Getting Started with Your AT Serial Hardware and Software for Windows
98/95, National Instruments, Inc., Austin, TX, 1998.

[5] HP E1432A User’s Guide, Hewlett-Packard Company, Palo Alto, CA, 1997.

[6] HP 33120A Function Generator/Arbitrary Waveform Generator User’s
Guide, Hewlett-Packard Company, Palo Alto, CA, 1997.

[7] HP VISA User’s Guide, Hewlett-Packard Company, Palo Alto, CA, 1998.

[8] NI-488.2MTM User Manual for Windows 95 and Windows NT, National
Instruments, Inc., Austin, TX, 1996.

[9] NI-VISATM User Manual, National Instruments, Inc., Austin, TX, 1998.

[10] IEEE Std 488.2-1992, IEEE Standard Codes, Formats, Protocols, and
Common Commands for Use with IEEE Std 4881.-1987, IEEE Standard
Digital Interface for Programmable Instrumentation, Institute of Electrical
and Electronics Engineers, New York, NY, 1992.

[11] Instrument Communication Handbook, IOTech, Inc., Cleveland, OH,
1991.

B Bibliography

[12] TDS 200-Series Two Channel Digital Oscilloscope Programmer Manual,
Tektronix, Inc., Wilsonville, OR.

[13] Stevens, W. Richard, TCP/IP Illustrated, Volume 1, Addison-Wesley,
Boston, MA, 1994.

B-2

Index

IndexA
A16/A24/A32 memory space 5-15
active state, serial port 6-5
ActualLocation property 20-2
adaptors 1-7

finding with instrhwinfo 1-12
add function 18-2
address configuration

GPIB object 4-18
VISA-GPIB object 5-7
VISA-GPIB-VXI object 5-25
VISA-RSIB object 5-41
VISA-TCPIP object 5-37
VISA-USB object 5-33
VISA-VXI object 5-12

Agilent Technologies
adaptors 1-7
E1432A registers, example of 5-17

Alias property 20-3
array, instrument object

creating 3-3
example of 4-40

ASCII
control characters 6-32
read operations 4-20

versus binary 3-20
serial data 6-9
write operations 4-20

versus binary 3-15
ASCII Communication Tool 18-73
asynchronous

read operations 3-22
readasync example 4-23
readasync example using events 4-35
ReadAsyncMode, example of 6-18

serial port 6-9
write operations 3-17

ATN line 4-7
serial poll 4-39

B
base properties 2-6

list for interface objects 19-2
BaudRate property 20-4
binary

floating-point arithmetic standard 12-8
read operations 4-22

versus text 3-20
write operations 3-15

binblockread function 18-6
binblockwrite function 18-9
blocks

Query Instrument 21-2
To Instrument 21-10
using the Instrument Control Toolbox

block library 16-1
BoardIndex

GPIB object 4-18
VISA-GPIB object 5-8
VISA-GPIB-VXI object 5-26

BoardIndex property 20-5
break-interrupt event

datagram-received 7-22
serial port 6-24

BreakInterruptFcn property 20-7
buffer

clearing hardware 4-28
input 3-19
output 3-13
values versus bytes 3-14

bus and connector, GPIB 4-4
BusManagementStatus

GPIB interface management lines 4-8
BusManagementStatus property 20-9

example of 20-9
ByteOrder property 20-11
bytes versus values 3-14
bytes-available event 4-30

example 4-35
BytesAvailable

Index-1

Index

example of 3-23
BytesAvailable property 20-12
BytesAvailableFcn property 20-13
BytesAvailableFcnCount property 20-16
BytesAvailableFcnMode property 20-17
BytesToOutput

output buffer 3-14
BytesToOutput property 20-19

C
callback functions

creating 4-32
enabling after they error 4-34
executing 4-32
instrcallback, example 4-29

callback properties
GPIB object 4-30
saving property values to a MAT-file 12-2
serial port object 6-23
TCPIP object 7-21
UDP object 7-21

CD pin 6-8
ChassisIndex property 20-20
clear

cleaning up the MATLAB
environment 3-24

clear function 18-12
clrdevice

example of 4-28
clrdevice function 18-13
commit function 18-14
CompareBits property 20-22
Configuration Tool 18-80
configuring property values 3-9
ConfirmationFcn property 20-23
connect function 18-15
connecting to the instrument 2-5

interface object 3-5
constructor 3-2

finding with instrhwinfo 1-13
control characters 6-32
control pins 6-7

using 6-28
controllers, GPIB 4-4
creation function 3-2
CTS pin 6-7

D
data bits 6-11
data format

serial port 6-8
data lines 4-7
DataBits property 20-24
DatagramAddress property 20-25
DatagramPort property 20-26
DatagramReceivedFcn property 20-27
DatagramTerminateMode property 20-28
DataTerminalReady property 20-29
DAV line 4-8
DCE 6-3
dec2bin 12-9
default property values 3-10
delete

cleaning up the MATLAB
environment 3-24

delete function 18-17
demos 1-8
device groups 8-14
device objects 8-1

compared to interface objects 2-3
connecting 8-7
control commands 8-12
creating 8-5
device groups 8-14
methods 8-10

devicereset function 18-19
DIO lines 4-7
disconnect function 18-20

Index-2

Index

disconnecting from the instrument 3-24
disp function 18-22
display summary

GPIB object 4-16
serial port object 6-16
TCPIP object 7-5
UDP object 7-11
VISA-GPIB object 5-6
VISA-GPIB-VXI object 5-24
VISA-RSIB object 5-40
VISA-serial object 5-28
VISA-TCPIP object 5-36
VISA-USB object 5-32
VISA-VXI object 5-11

documentation examples 1-8
dot notation

configuring property values 3-9
returning property values 3-8
saving property values to an M-file 12-2

DriverName property 20-30
DriverSessions property 20-31
DriverType property 20-32
DSR pin 6-7
DTE 6-3
DTR pin 6-7

E
echotcpip function 18-23
echoudp function 18-24
enable registers 4-10
EOI line 4-7

example of 4-26
EOIMode

example 4-26
EOIMode property 20-33
EOS character 4-26

EOSCharCode 20-34
EOSCharCode

example 4-26

EOSCharCode property 20-34
EOSMode

example 4-26
EOSMode property 20-35
error event 4-30
ErrorFcn property 20-38
ESER 4-13
even parity 6-11
event reporting 4-10
event types

GPIB object 4-30
serial port object 6-23
TCPIP object 7-21
UDP object 7-21

events 1-6
example index 1-8
examples

communicating with a GPIB
instrument 1-21

communicating with a GPIB instrument
through a device object 1-25

communicating with a GPIB-VXI
instrument 1-22

communicating with a serial port
instrument 1-24

connecting two modems 6-28
executing a serial poll 4-39
executing a trigger, GPIB 4-37
parsing input data using scanstr 4-25
reading binary data, GPIB 4-22
reading text data versus reading binary

data 3-20
recording information to disk 12-10
understanding EOI and EOS 4-26
using events and callbacks, GPIB 4-34
using events and callbacks, serial port 6-26
using software handshaking 6-33
writing and reading text data, GPIB 4-20
writing and reading text data, serial

port 6-20

Index-3

Index

writing text data versus writing binary
data 3-15

F
fclose

disconnecting from the instrument 3-24
fclose function 18-25
fgetl

reading text data 3-20
fgetl function 18-27

example of 18-29
fgets

reading text data 3-20
fgets function 18-31

example of 18-33
FlowControl

example of 6-33
FlowControl property 20-40
flushinput function 18-35
flushoutput function 18-36
fopen

connecting to the instrument 3-5
fopen function 18-37
format

record file 12-8
serial data 6-8

fprintf
example 4-21
writing text data 3-15

fprintf function 18-39
fread

example 4-23
reading binary data 3-20

fread function 18-43
fscanf

example 4-22
reading text data 3-20

fscanf function 18-48
full-duplex 6-6

function handles 4-32
functions

add 18-2
binblockread 18-6
binblockwrite 18-9
clear 18-12
clrdevice 18-13
commit 18-14
connect 18-15
delete 18-17
devicereset 18-19
disconnect 18-20
disp 18-22
echotcpip 18-23
echoudp 18-24
fclose 18-25
fgetl 18-27
fgets 18-31
flushinput 18-35
flushoutput 18-36
fopen 18-37
fprintf 18-39
fread 18-43
fscanf 18-48
fwrite 18-53
get 18-57

GPIB object 3-7
geterror 18-59
gpib 18-60

creating object 4-15
icdevice 18-64
inspect 18-69
instrcallback 18-71

example 4-29
example with binary data 4-35

instrcomm 18-73
instrcreate 18-80
instrfind 18-85
instrfindall 18-88

Index-4

Index

instrhelp 18-91
introduction 1-30

instrhwinfo 18-93
introduction 1-12

instrnotify 18-98
instrreset 18-101
invoke 18-102
isvalid 18-104
iviconfigurationstore 18-105
length 18-106
load 18-107
makemid 18-109
memmap 18-111
mempeek 18-113
mempoke 18-115
memread 18-117
memunmap 18-120
memwrite 18-122
methods 18-124
midedit 18-125
midtest 18-126
obj2mfile 18-127
propinfo 18-130

introduction 1-31
query 18-133
readasync 18-136

example 4-23
example using events 4-35

record 18-139
remove 18-141
resolvehost 18-142
save 18-143
scanstr 18-145
selftest 18-148
serial 18-149
serialbreak 18-151
set 18-152

configuring property values 3-9
GPIB object 3-6

size 18-155

spoll 18-156
stopasync 18-158
tcpip 18-160
tmtool 18-163
trigger 18-164

example 4-38
udp 18-165
update 18-168
visa 18-171

fwrite
example of 3-16
writing binary data 3-15

fwrite function 18-53

G
Generic instrument drivers 11-1

using at the command line 11-13
using with Test & Measurement Tool 11-9
writing 11-3

get
GPIB object properties 3-7

get function 18-57
geterror function 18-59
gpib

creating GPIB object 4-15
gpib function 18-60
GPIB object

address configuration 4-18
base properties 19-2
callback properties 4-30
creation 4-15
display summary 4-16
event types 4-30
events and callbacks 4-29
object-specific properties 19-5

GPIB standard 4-3
bus and connector 4-4
controllers 4-4
data 4-5

Index-5

Index

data lines 4-7
enable registers 4-10
event reporting 4-10
handshake lines 4-8
interface management lines 4-7
listeners 4-4
status registers 4-10
talkers 4-4

GPIB-VXI interface 5-22
graphical tools

instrcomm 18-73
instrcreate 18-80

Group Execute Trigger 4-37
GUI

instrcomm 18-73
instrcreate 18-80
instredit 18-125
Property Inspector 2-7

H
half-duplex 6-6
handshake lines 4-8
HandshakeStatus

GPIB handshake lines 4-10
HandshakeStatus property 20-42
handshaking

hardware 6-32
serial port object 6-31
software 6-32

hardware handshaking 6-32
hardware resources 1-12
HardwareAssets property 20-43
help 1-30

overview 1-8
hex2dec 12-9
hexadecimal values

converting to decimal values 12-9
saved to record file 12-12

high-level memory functions, VXI 5-16

HP-IB 4-3
HwIndex property 20-44
HwName property 20-45

I
icdevice function 18-64
IEEE

488 standard 4-3
754 standard 12-8
format saved to record file 12-8

IFC line 4-7
inactive state, serial port 6-5
input buffer 3-19
InputBufferSize property 20-46
inspect function 18-69
instrcallback

example 4-29
example using binary data 4-35

instrcallback function 18-71
instrcomm function 18-73
instrcreate function 18-80
instrfind function 18-85
instrfindall function 18-88
instrhelp

example of 1-30
instrhelp function 18-91
instrhwinfo

adaptors, finding 1-12
example of 1-12
object constructors, finding 1-13

instrhwinfo function 18-93
instrnotify function 18-98
instrreset function 18-101
instrument control session 2-1

loading 12-2
saving 12-2

Instrument Control Toolbox block library
using 16-1

instrument object 2-3

Index-6

Index

array
creating 3-3
example of 4-40

configuring property values 3-9
during object creation 3-2

connecting to instrument 2-5
creating 2-3
disconnecting from instrument 2-9
input buffer 3-19
interface-specific properties 19-5
invalid 3-24
loading 12-2
output buffer 3-13
reading data 3-18
returning from memory 18-85
returning property values 2-6
saving 12-2
specifying property names 3-9
writing data 3-13

InstrumentModel property 20-47
interface

driver adaptor 1-7
GPIB object 4-15
serial port object 6-15
TCPIP object 7-4
UDP object 7-10
VISA-GPIB object 5-5
VISA-GPIB-VXI object 5-23
VISA-RSIB object 5-39
VISA-serial object 5-27
VISA-TCPIP object 5-35
VISA-USB object 5-31
VISA-VXI object 5-10

interface management lines 4-7
interface object 3-1

base properties 19-2
compared to device object 2-3
connecting to instrument 3-5
creating 3-2
disconnecting from instrument 3-24

returning property values 3-6
Interface property 20-48
interface-specific properties

list by object type 19-5
InterfaceIndex property 20-49
InterruptFcn property 20-50
invalid instrument object 3-24
invoke function 18-102
isvalid function 18-104
IVI drivers 10-1

constructing device object 10-9
creating MATLAB IVI driver 10-6
IVI configuration store 10-11
shared components 10-2

iviconfigurationstore function 18-105

L
LANName property 20-51
length function 18-106
listeners 4-4
load 12-4
load function 18-107
loading instrument objects

from M-file 12-3
from MAT-file 12-4

LocalHost property 20-52
LocalPort property 20-53
LocalPortMode property 20-54
logical unit 4-18
LogicalAddress property 20-55
LogicalName property 20-56
LogicalNames property 20-57
low-level memory functions, VXI 5-19

M
makemid function 18-109
ManufacturerID property 20-58
MappedMemoryBase property 20-59

Index-7

Index

MappedMemorySize property 20-61
mark parity 6-11
MasterLocation property 20-62
MAT-file

instrument objects, saving to 12-4
properties, saving to 12-2

memmap function 18-111
memory mapping, VXI 5-19
MemoryBase property 20-63
MemoryIncrement property 20-65
MemorySize property 20-68
MemorySpace property 20-70
mempeek function 18-113
mempoke function 18-115
memread function 18-117
memunmap function 18-120
memwrite function 18-122
message-based communication, VXI 5-13
methods function 18-124
midedit function 18-125
midtest function 18-126
ModelCode property 20-72

N
Nagle’s algorithm 20-125
Name property 20-73

iviconfigurationstore 20-75
National Instruments

adaptors 1-7
NDAC line 4-8
NRFD line 4-8
null modem cable 6-4

O
obj2mfile

example 12-2
obj2mfile function 18-127
object constructor 3-2

finding with instrhwinfo 1-13
object-specific properties 2-6
ObjectVisibility property 20-76
odd parity 6-11
online help 1-30
output buffer 3-13
output-empty event 4-31
OutputBufferSize property 20-78
OutputEmptyFcn property 20-79

P
Parent property 20-81
parity bit 6-11
Parity property 20-82
parsing input data 4-25
pin-status event 6-24
PinStatus

example of 6-29
PinStatus property 20-84
PinStatusFcn property 20-86
Port property 20-88
PrimaryAddress

GPIB object 4-18
VISA-GPIB object 5-8
VISA-GPIB-VXI object 5-26

PrimaryAddress property 20-90
ProcessLocation property 20-92
properties

ActualLocation 20-2
Alias 20-3
BaudRate 20-4
BoardIndex 20-5
BreakInterruptFcn 20-7
BusManagementStatus 20-9
ByteOrder 20-11
BytesAvailable 20-12
BytesAvailableFcn 20-13
BytesAvailableFcnCount 20-16
BytesAvailableFcnMode 20-17

Index-8

Index

BytesToOutput 20-19
characteristics 1-31
ChassisIndex 20-20
CompareBits 20-22
ConfirmationFcn 20-23
DataBits 20-24
DatagramAddress 20-25
DatagramPort 20-26
DatagramReceivedFcn 20-27
DatagramTerminateMode 20-28
DataTerminalReady 20-29
DriverName 20-30
DriverSessions 20-31
DriverType 20-32
EOIMode 20-33
EOSCharCode 20-34
EOSMode 20-35
ErrorFcn 20-38
FlowControl 20-40
HandshakeStatus 20-42
HardwareAssets 20-43
HwIndex 20-44
HwName 20-45
InputBufferSize 20-46
InstrumentModel 20-47
Interface 20-48
InterfaceIndex 20-49
InterruptFcn 20-50
LANName 20-51
LocalHost 20-52
LocalPort 20-53
LocalPortMode 20-54
LogicalAddress 20-55
LogicalName 20-56
LogicalNames 20-57
ManufacturerID 20-58
MappedMemoryBase 20-59
MappedMemorySize 20-61
MasterLocation 20-62
MemoryBase 20-63

MemoryIncrement 20-65
MemorySize 20-68
MemorySpace 20-70
ModelCode 20-72
Name 20-73

iviconfigurationstore 20-75
ObjectVisibility 20-76
OutputBufferSize 20-78
OutputEmptyFcn 20-79
Parent 20-81
Parity 20-82
PinStatus 20-84
PinStatusFcn 20-86
Port 20-88
PrimaryAddress 20-90
ProcessLocation 20-92
PublishedAPIs 20-93
ReadAsyncMode 20-94
RecordDetail 20-96
RecordMode 20-97
RecordName 20-99
RecordStatus 20-100
RemoteHost 20-101
RemotePort 20-102
RequestToSend 20-103
Revision 20-104
RsrcName 20-105
SecondaryAddress 20-107
SerialNumber 20-109
ServerDescription 20-110
Sessions 20-111
Slot 20-112
SoftwareModules 20-113
SpecificationVersion 20-114
Status 20-115
StopBits 20-116
Tag 20-118
Terminator 20-119
Timeout 20-121
TimerFcn property 20-122

Index-9

Index

TimerPeriod property 20-124
TransferDelay 20-125
TransferStatus 20-126
TriggerFcn 20-128
TriggerLine 20-129
TriggerType 20-130
Type 20-131
UserData 20-133
ValuesReceived 20-134
ValuesSent 20-136
Vendor 20-138

Property Inspector 2-6
interface objects 3-10

property values
base 2-6

for interface objects 19-2
configuring 3-9

during object creation 3-2
default 3-10
interface-specific 19-5
object-specific 2-6
returning 2-6
returning from interface objects 3-6
saving 12-2
specifying names 3-9

propinfo
example of 1-31

propinfo function 18-130
PublishedAPIs property 20-93

Q
query function 18-133
Query Instrument block 21-2

R
read operations

asynchronous 4-23
using events 4-35

asynchronous versus synchronous 3-22
binary 4-22

versus text 3-20
completing

GPIB object 4-20
serial port object 6-20
UDP object 7-15

GPIB registers 4-14
register-based, VXI 5-13
synchronous 3-22
text 4-20

versus binary 3-20
readasync

asynchronous read operations 3-22
example 4-23
example using events 4-35

readasync function 18-136
ReadAsyncMode

asynchronous read operations 6-18
example of 6-18

ReadAsyncMode property 20-94
record

example 12-10
record file

creating multiple files 12-7
filename 12-7
format 12-8

record function 18-139
RecordDetail

example 12-10
format, record file 12-8

RecordDetail property 20-96
RecordMode

example 12-10
multiple record files, creating 12-7

RecordMode property 20-97
RecordName

example 12-10
specifying a record file name 12-7

RecordName property 20-99

Index-10

Index

RecordStatus property 20-100
register-based communication, VXI 5-13

high-level memory functions, example
of 5-16

low-level memory functions, example
of 5-19

registers
Agilent E1432A, example of 5-17
reading and writing 4-14

serial poll 4-40
Service Request Enable 4-12
Standard Event Status 4-13
Standard Event Status Enable 4-13
Status Byte 4-12

RemoteHost property 20-101
RemotePort property 20-102
remove function 18-141
REN line 4-7
RequestToSend 20-103
resolvehost function 18-142
resource name

visa input argument 18-171
returning objects from memory 18-85
returning property values 2-6

interface object 3-6
Revision property 20-104
RI pin 6-8
RS-232 standard 6-2
RsrcName property 20-105
RTS pin 6-7

S
save function 18-143
saving instrument objects

to M-file 12-2
to MAT-file 12-4

SBR 4-12
scanstr 4-25
scanstr function 18-145

SCPI 4-3
Secondary VISA 5-3
SecondaryAddress

GPIB object 4-18
VISA-GPIB object 5-8
VISA-GPIB-VXI object 5-26

SecondaryAddress property 20-107
selftest function 18-148
serial

creating a serial port object 6-15
serial function 18-149
serial poll 4-39
serial port

configuring via operating system 6-12
connecting two devices 6-3
data format 6-8
RS-232 standard 6-2
signal and pin assignments 6-4

serial port object
base properties 19-2
callback properties 6-23
configuring communications 6-17
control pins 6-7

using 6-28
creation 6-15
display summary 6-16
event types 6-23
events and callbacks 6-23
handshaking 6-31
object-specific properties 19-6
writing data 6-18

serialbreak function 18-151
SerialNumber property 20-109
ServerDescription property 20-110
Service Request Enable Register 4-12
SESR 4-13
session 2-1

loading 12-2
saving 12-2

Sessions property 20-111

Index-11

Index

set
configuring property values 3-9
GPIB object properties 3-6
saving property values to an M-file 12-2

set function 18-152
setserial 6-13
signal state

GPIB 4-6
serial port 6-5

size function 18-155
Slot property 20-112
software handshaking 6-32
SoftwareModules property 20-113
space parity 6-11
SpecificationVersion property 20-114
spoll 4-40
spoll function 18-156
SRER 4-12
SRQ line 4-7

serial poll 4-39
Standard Event Status Enable Register 4-13
Standard Event Status Register 4-13
start bit 6-10
Status Byte Register 4-12
Status property 20-115
status registers 4-10
stop bit 6-10
stopasync function 18-158
StopBits property 20-116
stty 6-14
synchronous

read operations 3-22
serial port 6-9
write operations 3-17

T
Tag property 20-118
talkers 4-4
tcpip

creating a TCPIP object 7-4
tcpip function 18-160
TCPIP object

callback properties 7-21
creation 7-4
display summary 7-5
event types 7-21
object-specific properties 19-7
writing data 7-14

termination
EOSCharCode, example of 4-27
read operations

GPIB object 4-20
serial port object 6-20
UDP object 7-15

Terminator, example 6-29
write operations

GPIB object 4-19
serial port object 6-19
UDP and TCIP objects 7-14

Terminator
example 6-29

Terminator property 20-119
Test & Measurement Tool 13-1

connecting to instrument 13-8
exporting data 13-10
exporting objects 13-10
getting started 1-16
hardware 13-4
instrument drivers 13-16
instrument objects 13-12
saving the session 13-11

text
read operations 4-20

versus binary 3-20
write operations 4-20

versus binary 3-15
Timeout property 20-121
timer event 4-31
tmtool

Index-12

Index

See also Test & Measurement Tool 13-1
tmtool function 18-163
To Instrument block 21-10
toolbox components

interface driver adaptor 1-7
M-files 1-6

TransferDelay property 20-125
TransferStatus property 20-126
trigger

example of 4-38
trigger function 18-164
TriggerFcn property 20-128
TriggerLine property 20-129
TriggerType property 20-130
troubleshooting

serial ports 6-12
tutorials 1-8
Type property 20-131

U
udp

creating a UDP object 7-10
udp function 18-165
UDP object

callback properties 7-21
creation 7-10
display summary 7-11
event types 7-21
object-specific properties 19-7
writing data 7-14

update function 18-168
UserData

saving values to a MAT-file 12-2
UserData property 20-133

V
values versus bytes 3-14
ValuesReceived property 20-134

ValuesSent property 20-136
Vendor property 20-138
VISA

secondary 5-3
visa function 18-171
VISA-GPIB object

address configuration 5-7
base properties 19-2
creation 5-5
display summary 5-6
object-specific properties 19-8

VISA-GPIB-VXI object
address configuration 5-25
base properties 19-2
creation 5-23
display summary 5-24
object-specific properties 19-8

VISA-RSIB object
address configuration 5-41
creation 5-39
display summary 5-40
object-specific properties 19-9

VISA-serial object
base properties 19-2
communication configuration 5-29
creation 5-27
display summary 5-28
object-specific properties 19-10

VISA-TCPIP object
address configuration 5-37
creation 5-35
display summary 5-36
object-specific properties 19-10

VISA-USB object
address configuration 5-33
creation 5-31
display summary 5-32
object-specific properties 19-11

VISA-VXI object
address configuration 5-12

Index-13

Index

base properties 19-2
creation 5-10
display summary 5-11
object-specific properties 19-11
register-based communication 5-13

VXI interface 5-9
VXIplug&play drivers 9-1

constructing device object 9-6
creating MATLAB VXIplug&play

driver 9-4

W
Workspace browser

Display Hardware Info 1-15
Display Summary 4-16
Instrument Help 1-30
Property Inspector 2-7

write operations
asynchronous 3-17

binary 3-15
completing

GPIB object 4-19
serial port object 6-19
UDP and TCPIP objects 7-14

GPIB registers
common commands 4-14
serial poll example 4-40

register-based, VXI 5-13
synchronous 3-17
text

example 4-20
text versus binary 3-15
values versus bytes 3-14

X
Xoff 6-32
Xon 6-32

Index-14

	toc
	Getting Started
	What Is the Instrument Control Toolbox?
	Exploring the Instrument Control Toolbox
	Learning About Instrument Control Toolbox
	Using the Documentation Examples

	Toolbox Components
	M-File Functions
	The Interface Driver Adaptor

	Understanding the Toolbox Capabilities
	Overview Help
	Documentation Examples
	Demos

	Installation Information
	Toolbox Installation
	Hardware and Driver Installation

	Examining Your Hardware Resources
	instrhwinfo
	General Toolbox Information
	Interface Information
	Adaptor Information
	Instrument Object Information
	Installed Driver Information

	The Test & Measurement Tool (tmtool)
	Hardware
	Installed Drivers

	Viewing the IVI Configuration Store
	Command-Line Configuration
	Test & Measurement Tool

	Communicating with Your Instrument
	Communicating with a GPIB Instrument
	Communicating with a GPIB-VXI Instrument
	Communicating with a Serial Port Instrument
	Communicating with a GPIB Instrument Using a Device Object

	General Preferences for Instrument Control
	MATLAB Instrument Driver Editor
	MATLAB Instrument Driver Testing Tool
	Device Objects
	IVI Configuration Store

	Getting Help
	The instrhelp Function
	The propinfo Function
	Online Support

	The Instrument Control Session
	Creating Instrument Objects
	Interface Objects
	Device Objects

	Connecting to the Instrument
	Configuring and Returning Properties
	Returning Property Names and Property Values
	The Property Inspector

	Communicating with Your Instrument
	Interface Objects and Instrument Commands
	Device Objects and Instrument Drivers

	Disconnecting and Cleaning Up
	Disconnecting an Instrument Object
	Cleaning Up the MATLAB Environment

	Summary
	Advantages of Using Device Objects
	When to Use Interface Objects

	Using Interface Objects
	Creating an Interface Object
	Configuring Properties During Object Creation
	Creating an Array of Instrument Objects

	Connecting to the Instrument
	Configuring and Returning Properties
	Returning Property Names and Property Values
	Configuring Property Values
	Specifying Property Names
	Default Property Values
	The Property Inspector

	Writing and Reading Data
	Writing Data
	The Output Buffer and Data Flow
	Writing Text Data Versus Writing Binary Data
	Synchronous Versus Asynchronous Write Operations

	Reading Data
	The Input Buffer and Data Flow
	Reading Text Data Versus Reading Binary Data
	Synchronous Versus Asynchronous Read Operations

	Disconnecting and Cleaning Up
	Disconnecting an Instrument Object
	Cleaning Up the MATLAB Environment

	Controlling Instruments Using the GPIB
	GPIB Overview
	What Is GPIB?
	Important GPIB Features
	Bus and Connector
	GPIB Devices
	GPIB Data

	GPIB Lines
	Data Lines
	Interface Management Lines
	Handshake Lines

	Status and Event Reporting
	Status Byte Register
	Standard Event Status Register
	Reading and Writing Register Information

	Creating a GPIB Object
	The GPIB Object Display

	Configuring the GPIB Address
	Writing and Reading Data
	Rules for Completing Write and Read Operations
	Completing Write Operations
	Completing Read Operations

	Example: Writing and Reading Text Data
	Example: Reading Binary Data
	Viewing the Bitmap Data

	Example: Parsing Input Data Using scanstr
	Example: Understanding EOI and EOS

	Events and Callbacks
	Example: Introduction to Events and Callbacks
	Event Types and Callback Properties
	Bytes-Available Event
	Error Event
	Output-Empty Event
	Timer Event

	Storing Event Information
	The AbsTime Field
	The Message Field

	Creating and Executing Callback Functions
	Enabling Callback Functions After They Error
	Example: Using Events and Callbacks to Read Binary Data

	Triggers
	Example: Executing a Trigger

	Serial Polls
	Example: Executing a Serial Poll

	Controlling Instruments Using VISA
	VISA Overview
	The GPIB Interface
	Creating a VISA-GPIB Object
	The VISA-GPIB Object Display

	The VISA-GPIB Address

	The VXI Interface
	Creating a VISA-VXI Object
	The VISA-VXI Object Display

	The VISA-VXI Address
	Register-Based Communication
	Example: Understanding Your Instrument's Register Characteristic
	Example: Using High-Level Memory Functions
	Example: Using Low-Level Memory Functions

	The GPIB-VXI Interface
	Creating a VISA-GPIB-VXI Object
	The VISA-GPIB-VXI Object Display

	The VISA-GPIB-VXI Address

	The Serial Port Interface
	Creating a VISA-Serial Object
	The VISA-Serial Object Display

	Configuring Communication Settings

	The USB Interface
	Creating a VISA-USB Object
	The VISA-USB Object Display

	The VISA-USB Address

	The TCP/IP Interface
	Creating a VISA-TCPIP Object
	The VISA-TCPIP Object Display

	The VISA-TCPIP Address

	The RSIB Interface
	Creating a VISA-RSIB Object
	The VISA-RSIB Object Display

	The VISA-RSIB Address

	Controlling Instruments Using the Serial Port
	Serial Port Overview
	What Is Serial Communication?
	The Serial Port Interface Standard
	Connecting Two Devices with a Serial Cable
	Serial Port Signals and Pin Assignments
	Signal States
	The Data Pins
	The Control Pins

	Serial Data Format
	Bytes Versus Values
	Synchronous and Asynchronous Communication
	How Are the Bits Transmitted?
	Start and Stop Bits
	Data Bits
	The Parity Bit

	Finding Serial Port Information for Your Platform
	Windows Platform
	UNIX Platform

	Creating a Serial Port Object
	The Serial Port Object Display

	Configuring Communication Settings
	Writing and Reading Data
	Asynchronous Write and Read Operations
	Asynchronous Read Operations

	Rules for Completing Write and Read Operations
	Completing Write Operations
	Completing Read Operations

	Example: Writing and Reading Text Data

	Events and Callbacks
	Event Types and Callback Properties
	Break-Interrupt Event
	Pin-Status Event

	Storing Event Information
	The AbsTime Field
	The Pin Field
	The PinValue Field
	The Message Field

	Example: Using Events and Callbacks

	Using Control Pins
	Signaling the Presence of Connected Devices
	Example: Connecting Two Modems

	Controlling the Flow of Data: Handshaking
	Hardware Handshaking
	Software Handshaking

	Controlling Instruments Using TCP/IP and UDP
	TCP/IP and UDP Overview
	Creating a TCPIP Object
	The TCPIP Object Display
	Example: Communicating with a Remote Host
	Example: Server Drops the Connection

	Creating a UDP Object
	The UDP Object Display
	Example: Communicating Between Two Hosts

	Writing and Reading Data
	Rules for Completing Write and Read Operations
	Completing Write Operations
	Completing Read Operations

	Example: Writing and Reading Data with a TCPIP Object
	Example: Writing and Reading Data with a UDP Object

	Events and Callbacks
	Event Types and Callback Properties
	Datagram-Received Event

	Storing Event Information
	The AbsTime Field
	The DatagramAddress Field
	The DatagramLength Field
	The DatagramPort Field
	The Message Field

	Example: Using Events and Callbacks

	Using Device Objects
	Device Object Overview
	What Are Device Objects?
	Device Objects for MATLAB Instrument Drivers
	Available MATLAB Instrument Drivers

	Creating and Connecting Device Objects
	Device Objects for MATLAB Interface Drivers
	Device Object Properties
	The Device Object Display

	Device Objects for VXI plug&play and IVI Drivers
	Creating the MATLAB Instrument Driver
	Creating the Device Object

	Connecting the Device Object

	Communicating with Instruments
	Configuring Instrument Settings
	Example: Configuring Settings on an Oscilloscope

	Calling Device Object Methods
	Example: Using Device Object Functions

	Control Commands
	InstrumentModel
	devicereset
	selftest
	geterror

	Device Groups
	Example: Using Device Groups to Access Instrument Data

	Using VXI plug&play Drivers
	Overview
	VISA Setup
	Other Software Requirements

	VXI plug&play Drivers
	Installation
	Creating a MATLAB VXI plug&play Instrument Driver
	Downloading a Driver from the MathWorks Web Site
	Creating a Driver with makemid
	Importing with the MATLAB Instrument Driver Editor (midedit)

	Constructing Device Objects Using a MATLAB VXI plug&play Instrum

	Using IVI Drivers
	Overview
	VISA Setup
	IVI Shared Components
	IVI Configuration Store Overview

	IVI Drivers
	IVI-C and IVI-COM
	Installation
	MATLAB IVI Instrument Drivers
	Downloading a Driver from the MathWorks Web Site
	Creating a Driver with makemid
	Importing with the MATLAB Instrument Driver Editor (midedit)

	Constructing Device Objects Using a MATLAB IVI Instrument Driver

	IVI Configuration Store
	Components
	Software Module
	Hardware Asset
	Driver Session
	Logical Name

	Configuring

	Using Generic Instrument Drivers
	Overview
	Example — Writing a Generic Driver
	Creating the Driver and Defining Its Initialization Behavior
	Defining Properties
	Using the Same Name for a Property
	Using a Different Name for a Property

	Defining Functions

	Example — Using a Generic Driver with the Test & Measurement Too
	Creating and Connecting the Device Object
	Accessing Properties
	Using Functions

	Example — Using a Generic Driver at the Command Line
	Creating and Connecting the Device Object
	Accessing Properties
	Using Functions

	Saving and Loading the Session
	Saving and Loading Instrument Objects
	Saving Instrument Objects to an M-File
	Loading the Instrument Object

	Saving Objects to a MAT-File
	Loading the Instrument Object

	Debugging: Recording Information to Disk
	Example: Introduction to Recording Information
	Creating Multiple Record Files
	Specifying a Filename
	The Record File Format
	Example: Recording Information to Disk
	The Record File Contents

	The Test & Measurement Tool
	Overview
	Instrument Control Toolbox Support
	The Tree

	Using the Test & Measurement Tool
	Hardware
	Selecting the Interface and Scanning for GPIB Boards
	Scanning for Instruments Connected to GPIB Boards
	Configuring the Interface
	Establishing the Connection
	Writing and Reading Data
	Exporting Instrument Data
	Exporting the GPIB Object

	Instrument Objects
	Interface Objects
	Device Objects
	Setting Instrument Object Properties
	Communicating with Your Instrument

	Instrument Drivers
	MATLAB Instrument Drivers
	VXI plug&play Drivers
	IVI Drivers

	The Instrument Driver Editor
	Overview
	What Is a MATLAB Instrument Driver?
	How Does a MATLAB Instrument Driver Work?
	Why Use a MATLAB Instrument Driver?

	Creating MATLAB Instrument Drivers
	Driver Components
	MATLAB Instrument Driver Editor Features
	Saving MATLAB Instrument Drivers
	Driver Summary and Control Commands
	Driver Summary
	Control Commands
	Example — Defining Driver Summary and Control Commands
	Verifying Driver Summary and Control Commands

	Initialization and Cleanup
	Create Code
	Example — Defining Create Code
	Verifying Create Code
	Connect Code
	Example — Defining Connect Code
	Verifying Connect Code
	Disconnect Code
	Example — Defining Disconnect Code
	Verifying Disconnect Code

	Properties
	Property Components
	Set Code
	Get Code
	Accepted Property Values
	Property Value Dependencies
	Default Value
	Read-Only Value
	Help Text

	Examples of Properties
	Example — Creating a Double-Bounded Property
	Example — Creating an Enumerated Property
	Example — An M-Code Style Property

	Functions
	Function Components
	Code
	Help Text

	Examples of Functions
	Example — A Simple Function
	Example — A Function with Instrument Commands that Use Input and
	Example — An M-Code Style Function

	Groups
	Group Components
	Selection Command
	Identification String

	Examples of Groups
	Example — Creating a One-Element Group
	Example — Defining the Group Object Properties for a One-Element
	Example — Creating a Four-Element Group
	Example — Defining the Group Object Properties for a Four-Elemen

	Using Existing Drivers
	Modifying MATLAB Instrument Drivers
	Deleting an Existing Property, Function, or Group
	Renaming an Existing Property, Function, or Group
	Other Settings and Tasks

	Importing VXI plug&play and IVI Drivers

	The Instrument Driver Testing Tool
	Overview
	Drivers
	Test Structure
	Setup
	Test Steps

	Starting
	Example

	Setting Up Your Test
	The Test File
	Providing a Name and Description
	Specifying the Driver
	Specifying an Interface
	Setting Test Preferences
	Run Mode
	Fail Action
	No-error String
	Number of Values to Test

	Example — Setting Up a Driver Test

	Defining Test Steps
	Test Step: Set Property
	Settings
	Example — Creating a Test Step: Set Property
	Running a Test Step to Set a Property

	Test Step: Get Property
	Settings
	Example — Creating a Test Step: Get Property
	Running a Test Step to Get a Property

	Test Step: Properties Sweep
	Settings
	Example — Creating a Sweep Step to Test All Properties
	Running a Sweep Step to Test All Properties

	Test Step: Function
	Settings
	Example — Creating a Test Step: Function
	Running a Test Step to Test a Function

	Saving Your Test
	Saving the Test File
	Saving the Test as M-Code
	Saving the Test as a Driver Function
	Example — Creating a Driver Test Function
	Example — Calling a Driver Test Function from MATLAB

	Testing and Results
	Running All Steps
	Example — Running a Complete Test

	Partial Testing
	Exporting Results
	Example — Exporting Test Results to the MATLAB Workspace

	Saving Results

	Using the Instrument Control Toolbox Block Library
	Overview
	Example: Sending and Receiving Data Through a Serial Port Loopba
	Step 1: Open the Block Library
	Step 2: Create a New Model
	Step 3: Drag the Instrument Control Toolbox Blocks into the Mode
	Step 4: Drag Other Blocks to Complete the Model
	Step 5: Connect the Blocks
	Step 6: Specify the Block Parameter Values
	Step 7: Run the Simulation

	Functions — By Category
	Instrument Object Creation
	Interface Object
	Device Object

	State Change
	Interface Object
	Device Object

	Property Display and Configuration
	Reading Data
	Writing Data
	Information and Help
	Graphical Tools
	Interface Object
	Device Object

	General Purpose
	Interface Objects
	GPIB
	Serial Port
	TCP/IP
	UDP
	VISA-GPIB
	VISA-GPIB-VXI
	VISA-Serial
	VISA-VXI

	Device Objects
	IVI Configuration Store Objects

	Functions — Alphabetical List
	Properties — By Category
	Interface Object Base Properties
	Writing Data
	Reading Data
	Recording Data
	Callbacks
	General Purpose

	Interface-Specific Properties
	GPIB
	Serial Port
	TCPIP
	UDP
	VISA-GPIB
	VISA-GPIB-VXI
	VISA-RSIB
	VISA-Serial
	VISA-TCPIP
	VISA-USB
	VISA-VXI

	Device Object Base Properties
	IVI Configuration Store Object Properties

	Properties — Alphabetical List
	Blocks — Alphabetical List
	Vendor Driver Requirements and Limitations
	Driver Requirements
	GPIB Driver Limitations
	Advantech
	Agilent Technologies
	Capital Equipment Corporation
	ICS Electronics
	IOTech
	Keithley
	Measurement Computing Corporation

	VISA Driver Limitations
	Agilent Technologies
	National Instruments

	Bibliography
	Index

	tables
	Supported Interfaces and Adaptor Names
	Interface Object Creation Functions
	Functions Associated with Writing Data
	Properties Associated with Writing Data
	Functions Associated with Reading Data
	Properties Associated with Reading Data
	GPIB Pin and Signal Assignments
	GPIB Interface Management Lines
	GPIB Handshake Lines
	Status Byte Register Bits
	Standard Event Status Register Bits
	GPIB Commands for Reading and Writing Register Information
	GPIB Descriptive Properties
	GPIB Address Properties
	GPIB Event Types and Callback Properties
	GPIB Event Information
	VISA-GPIB Descriptive Properties
	VISA-GPIB Address Properties
	VISA-VXI Descriptive Properties
	VISA-VXI Address Properties
	VISA-VXI Register-Based Write and Read Functions
	VISA-VXI Register-Based Write and Read Properties
	Agilent E1432A Register Information
	VISA-GPIB-VXI Descriptive Properties
	VISA-GPIB-VXI Address Properties
	VISA-Serial Descriptive Properties
	VISA-Serial Communication Properties
	VISA-USB Descriptive Properties
	VISA-USB Address Properties
	VISA-TCPIP Descriptive Properties
	VISA-TCPIP Address Properties
	VISA-RSIB Descriptive Properties
	VISA-RSIB Address Property
	Serial Port Pin and Signal Assignments
	Parity Types
	Serial Port Descriptive Properties
	Serial Port Communication Properties
	Serial Port Event Types and Callback Properties
	Serial Port Event Information
	Serial Port Control Pin Properties
	Software Handshaking Characters
	TCPIP Descriptive Properties
	UDP Descriptive Properties
	TCPIP and UDP Event Types and Callback Properties
	TCPIP and UDP Event Information
	Recording Properties

